В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
0004556189
0004556189
31.03.2023 15:27 •  Алгебра

Разложитенамножители:2 −2 −+−+

Показать ответ
Ответ:
малинка188
малинка188
01.05.2020 12:18

Чтобы не искать число за числом по калькулятору, будем рассуждать логически:

 

Попробуем составить уравнение, которое нам.

 

Нам нужно, чтобы двузначное число делилось на произведение своих цифр. Представим само число как сумму десятков и единиц:

 

10x + y

 

А произведение представим просто:

 

x × y

 

Теперь уравняем их:

 

10x + y = x × y

 

x ≠ 0

y ≠ 0

 

1. Возьмём x = 1

 

10 × 1 + y = 1 × y

10 + y = y

 

Теперь разделим левую часть на правую. Суть этого уравнения состоит в том, что левая часть уравнения должна делиться на правую без остатка. Таким образом мы и найдём все двузначные числа, которые кратны произведению своих цифр.)

 

Значится:

 

(10 + y) ÷ y = 10/y + y/y = 10/y + 1

 

Смотрим. В сумме должно получится ЦЕЛОЕ число. Чтобы оно получилось, надо знать, на что делится десятка без остатка. А делится она на 1, 2 и 5.) Значит, "игрек" будет равен этим числам. первые три числа уже нашли. Это:

 

11, 12 и 15.

 

2. Теперь возьмём x = 2

 

10 × 2 + y = 2 × y

20 + y = 2y

(20 + y) ÷ 2y = 20/2y + y/2y = 10/y + 1/2

 

Опять же - в сумме должно получится ЦЕЛОЕ число. Значит надо думать, на что поделить десятку, чтобы потом полученное число сложить с дробью 1/2 (0,5) и в конечном счёте получить целое число.

 

Очевидно, что это цифра "4", т.к. 10 ÷ 4 = 2,5. А 2,5 + 0,5 = 3 - целое число.) 

 

Значит, y = 4. В итоге получаем ещё одно число, кратное произведению своих цифр:

 

24.

 

3. Теперь x = 3

 

10 × 3 + y = 3 × y

30 + y = 3y

(30 + y) ÷ 3y = 30/3y + y/3y = 10/y + 1/3

 

Те же манипуляции. Ищем, на что дожна делиться десятка, чтобы полученное число прибавить к 1/3 и получить целое число.)

 

Это цифра "6". y = 6

 

10/6 = 5/3 = 1 целая и 2/3. 1 целая и 2/3 + 1/3 = 3.

 

Нашли ещё одно число:

 

36.

 

4. x = 4

 

10 × 4 + y = 4 × y

40 + y = 4y

(40 + y) ÷ 4y = 40/4y + y/4y = 10/y + 1/4

 

Думаем. Но думать здесь нечего. Единственное число от 1 до 9, на которое можно поделить десятку - это 8. Но если мы поделим:

 

10/8 = 5/4 = 1 целая и 1/4,

 

то мы увидим, что, прибавив 1/4 к полученному результату, целое число мы не получим. Здесь не подходит.

 

Во всех остальных значениях "икс" - 5, 6, 7, 8 и 9 - цифру "игрек" также нельзя найти.

 

Всё. То, что мы получили - и есть все двузначные числа, которые кратны произведению своих цифр:

 

11, 12, 15, 24 и 36.

0,0(0 оценок)
Ответ:
AlexBennet
AlexBennet
01.05.2020 12:18

Пусть двузначное число составлено из двух цифр a и b, причём a≠0 и b≠0. Тогда число можно представить в виде суммы  \overline{ab}=10a+b.

Сразу проверим случай  a=b :  \dfrac {10a+a}{a\cdot a}=\dfrac {11}{a}. Так как число 11 - простое (делители 1 и 11), только число 11 будет кратно 1·1. Другие двузначные числа не подходят под условие.

Число кратно произведению цифр ab.

\dfrac {10a+b}{ab}=k,~k\in N\\\\kab=10a+b~~|:b\neq 0 \\\\ka=\dfrac{2\cdot 5\cdot a}b+1

Так как числа  ka и 1 - целые, значит, дробь должна тоже стать целым числом. Знаменатель b должен быть равен 1 или сократиться.

1)~\boldsymbol{b=1;}~~a=\dfrac {b}{kb-10}=\dfrac 1{k-10};~~~k=11; \boldsymbol{a=1}

2)~\boldsymbol{b=2;}~~\dfrac {10a+2}{2a}=5+\dfrac 1{a};~~~\boldsymbol{a=1}

3)~\boldsymbol{b=5;}~~\dfrac {10a+5}{5a}=2+\dfrac 1{a};~~~\boldsymbol{a=1}

4) Число a или число 2a  должны быть кратны цифре b. Возможные пары, помимо рассмотренных :  (2;4), (3,6), (4,8), (6,3), (8,4), (9,3)

a = 2; b = 4;   \dfrac {10a+b}{ab}=\dfrac {20+4}{2\cdot4}=4

a = 3; b = 6;   \dfrac {30+6}{3\cdot6}=2

Остальные варианты не подходят

a = 4; b = 8;   \dfrac {40+8}{4\cdot8}=\dfrac32       a = 6; b = 3;   \dfrac {60+3}{6\cdot3}=\dfrac{7}2

a = 8; b = 4;   \dfrac {80+4}{8\cdot4}=\dfrac{21}8      a = 9; b = 3;   \dfrac {90+3}{9\cdot3}=\dfrac{31}9

ответ : 11, 12, 15, 24, 36

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота