Размер спальни в доме 100 м³. Если на 1 м³ известно 3,4-10% частиц пыли, то выясните, сколько частиц пыли находится в комнате всего дома. Напишите ответ стандартными числами
1)ответ: p = 5, q = 3. Пусть p – q = n, тогда p + q = n³. 2) ответ: Нет. Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b. Пусть искомый многочлен f(x) существует. Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3). Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1. Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени). То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
График функции y= -x² + bx + c пересекает ось у в пункте (0; 3). Наибольшее значении функции равно 7. Эта функция возрастает в интервале (-бесконечность; 2) и убывает в интервале (2; +бесконечность). Нарисуй функцию, следуй всем указаниям. Назови значения b и c .
y(x) = - x² + bx + c ; y(0) = -0² + b*0 + c =3 ⇒ c=3 . y(x) = - x² + bx + 3 = - (x - b/2)²+b²/4 +3 Координаты вершина параболы x₀ = b/2 ; y₀ =b²/4 +3 Из условия "Наибольшее значении функции равно 7" следует max(y) =y₀ =b²/4 +3 =7 ⇒ b =±4 , т.е. x₀ = b/2 =±2,а с условия "Эта функция возрастает в интервале (-∞; 2) и убывает в интервале (2; +∞) уточняем b/2 = 2 ⇒ b=4 .* * * Если исходим из условии "Эта функция возрастает в интервале (-∞; 2) и убывает в интервале (2; +)", то сразу определим b/2 = 2 и max(y)=y₀ =b²/4 +3 =4²/4 =3 =4+3 =7 совпадает с условием_не мешает) ; в этом случае условия "Наибольшее значении функции равно 7"_лишнее * * *
y = - x²+ 4x +3 График этой функции пересекает ось в точках (2 -√7 ; 0) и (2+√7 ; 0) * * * 2 -√7 и 2 -√7 корни уравнения - x²+ 4x +3 =0⇔x²- 4x - 3 =0 * * *
Пусть p – q = n, тогда p + q = n³.
2)
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
График функции y= -x² + bx + c пересекает ось у в пункте (0; 3). Наибольшее значении функции равно 7. Эта функция возрастает в интервале (-бесконечность; 2) и убывает в интервале (2; +бесконечность).
Нарисуй функцию, следуй всем указаниям. Назови значения b и c .
y(x) = - x² + bx + c ;
y(0) = -0² + b*0 + c =3 ⇒ c=3 .
y(x) = - x² + bx + 3 = - (x - b/2)²+b²/4 +3
Координаты вершина параболы x₀ = b/2 ; y₀ =b²/4 +3
Из условия "Наибольшее значении функции равно 7" следует
max(y) =y₀ =b²/4 +3 =7 ⇒ b =±4 , т.е. x₀ = b/2 =±2,а с условия
"Эта функция возрастает в интервале (-∞; 2) и убывает в интервале
(2; +∞) уточняем b/2 = 2 ⇒ b=4 .* * * Если исходим из условии "Эта функция возрастает в интервале (-∞; 2) и убывает в интервале (2; +)",
то сразу определим b/2 = 2 и max(y)=y₀ =b²/4 +3 =4²/4 =3 =4+3 =7 совпадает с условием_не мешает) ; в этом случае условия "Наибольшее значении функции равно 7"_лишнее * * *
y = - x²+ 4x +3
График этой функции пересекает ось в точках (2 -√7 ; 0) и (2+√7 ; 0)
* * * 2 -√7 и 2 -√7 корни уравнения - x²+ 4x +3 =0⇔x²- 4x - 3 =0 * * *