Объяснение:
а) 14 + 3х > 18 – 5х
8x>4 / : 8
x> 1/2
1/2 >
x ∈ (1/2;+∞)
б) 6(х + 5) ≤ 3(5х – 11)
6x+30 ≤ 15x-33
30+33 ≤ 15x-6x
9x≥63 / :9
x≥7
7· >
x ∈ [7;+∞)
в) 4(а² + 12) – (2а + 6)² > - 12
4a^2+48-4a^2-24a-36 > -12
-24a+12 > -12
-24a>-12-12
-24a>-24a / :(-24)
a < 1
1 >
a ∈ (-∞;1)
г) 6х ≥ 48.
6x ≥ 48 / : 6
x ≥ 8
8 >
x ∈ [8;+∞)
Объяснение:
а) 14 + 3х > 18 – 5х
8x>4 / : 8
x> 1/2
1/2 >
x ∈ (1/2;+∞)
б) 6(х + 5) ≤ 3(5х – 11)
6x+30 ≤ 15x-33
30+33 ≤ 15x-6x
9x≥63 / :9
x≥7
7· >
x ∈ [7;+∞)
в) 4(а² + 12) – (2а + 6)² > - 12
4a^2+48-4a^2-24a-36 > -12
-24a+12 > -12
-24a>-12-12
-24a>-24a / :(-24)
a < 1
1 >
a ∈ (-∞;1)
г) 6х ≥ 48.
6x ≥ 48 / : 6
x ≥ 8
8 >
x ∈ [8;+∞)
б) (у – 9)2 – 3у(у + 1) =y^2-18y+81-3y^2-3y=-2y^2-21y+81
в) 3(х – 4) 2 – 3х2 =3(x^2-8x+16)-3x^2=3x^2-24x+48-3x^2=48-24x
2. Разложите на множители:
а) 25х – х3=x(25-x^2)=x(5-x)(5+x) б) 2х2 – 20х + 50 =2(x^2-10x+25)=2(x-5)^2=2(x-5)(x+5)
3. Найдите значение выражения а2 – 4bс=36-4*(-11)*(-10)=36-440=-404
а) 452 б) -202 в) -404 г) 476
4. Упростите выражение:
(с2 – b)2 – (с2 - 1)(с2 + 1) + 2bс2 =c^4-4bc^2+b^2-c^4+1=-4bc^2+b^2+1
5. Докажите тождество:
(а + b)2 – (а – b)2 = 4аba^2+2ab+b^2-a^2+2ab-b^2=2a+2ab=4ab