1) -х³ + 3х² + х +1
3) 3х³ +10х² +4х —2
Объяснение:
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
1) (х-1)² - х(х+1)(х-3) =
=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =
=х² +1 — 2х - х*(х² + х — 3х —3) =
=х² +1 — 2х - х*(х² — 2х —3) =
=х² +1 — 2х - х*х² - х*(-2х) +х*3 =
=х² +1 — 2х - х³ +2х² +3х=
=-х³ + 3х² + х +1
3) (х-2)² + 3(х+1)³ - (х+9) =
= х² + 2² —2*2*х +
+ 3*(х³ +3*х²*1 +3*х*1² +1³) -
- 1*х —1*9=
= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =
= х² —5 —5х +3(х³ +3х² +3х +1) =
= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =
= х² —5 —5х +3х³ +9х² +9х +3 =
= 3х³ +10х² +4х —2
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.
1) -х³ + 3х² + х +1
3) 3х³ +10х² +4х —2
Объяснение:
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
1) (х-1)² - х(х+1)(х-3) =
=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =
=х² +1 — 2х - х*(х² + х — 3х —3) =
=х² +1 — 2х - х*(х² — 2х —3) =
=х² +1 — 2х - х*х² - х*(-2х) +х*3 =
=х² +1 — 2х - х³ +2х² +3х=
=-х³ + 3х² + х +1
3) (х-2)² + 3(х+1)³ - (х+9) =
= х² + 2² —2*2*х +
+ 3*(х³ +3*х²*1 +3*х*1² +1³) -
- 1*х —1*9=
= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =
= х² —5 —5х +3(х³ +3х² +3х +1) =
= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =
= х² —5 —5х +3х³ +9х² +9х +3 =
= 3х³ +10х² +4х —2
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.