№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ОДЗ: х>0
Так как 1/3<1, то
x>(1/3)⁻²
x>3²
x>9
x∈(9; +∞)
ответ: (9; +∞)
б)
ОДЗ: 3x+1>0 и x-3>0
3x> -1 x>3
x> -1/3
В итоге ОДЗ: x>3
Так как 5>1, то
3x+1>x-3
3x-x> -3-1
2x> -4
x> -2
С учетом ОДЗ:
{x>3
{x> -2 ⇒ x>3
x∈(3; +∞)
ответ: (3; +∞).
в)
ОДЗ: x>0 и x+1>0
x> -1
В итоге ОДЗ: x>0
Так как 5>1, то
x(x+1)>2
x²+x-2>0
x²+x-2=0
D=1²-4*(-2)=1+8=9=3²
x₁=(-1-3)/2= -2
x₂=(-1+3)/2=1
+ - +
-2 1
x∈(-∞; -2)U(1; +∞)
С учетом ОДЗ:
{x>0
{x∈(-∞; -2)U(1; +∞) ⇒ x∈(1; +∞)
ответ: (1; +∞).