Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Решение системы уравнений х=2
у=2
Да, является.
Объяснение:
Запишите систему уравнений 2х-у=2 и 3х+2у=10 является ли пара чисел (2;2) решением этой системы?
Решить систему уравнений:
2х-у=2
3х+2у=10
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=2-2х
у=2х-2
3х+2(2х-2)=10
3х+4х-4=10
7х=10+4
7х=14
х=2
Теперь вычислим у:
у=2х-2
у=2*2-2=2
у=2
Решение системы уравнений х=2
у=2
Да, является.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.