так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
Пусть заданное число - Х
К заданному числу прибавить его 1/3 часть: Х + 1/3*Х или Х + Х/3
то получиться число которое меньше 36 : Х + Х/3 < 36
Если данное число уменьшить на его1/2 часть: Х - 1/2*Х или Х - Х/2
то получиться число которое больше 11 : Х - Х/2 > 11
Имеем систему неравенств:
Х + Х/3 < 36
Х - Х/2 > 11
4Х/3 < 36 | * 3Х/2 > 11 | * 2
4Х < 108 | : 4
Х > 22
Х < 27
ответ: 22 < Х < 27.
так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
Пусть заданное число - Х
К заданному числу прибавить его 1/3 часть: Х + 1/3*Х или Х + Х/3
то получиться число которое меньше 36 : Х + Х/3 < 36
Если данное число уменьшить на его1/2 часть: Х - 1/2*Х или Х - Х/2
то получиться число которое больше 11 : Х - Х/2 > 11
Имеем систему неравенств:
Х + Х/3 < 36
Х - Х/2 > 11
4Х/3 < 36 | * 3
Х/2 > 11 | * 2
4Х < 108 | : 4
Х > 22
Х < 27
Х > 22
ответ: 22 < Х < 27.