в заданной прогрессии 6 членов
Объяснение:
1. Для заданной геометрической прогрессии B(n) известно следующее:
B1 + Bn = 66;
B1 = 66 - Bn;
2. B2 * B(n - 1) = 128;
(B1 * q) * (B1 * q^(n - 2) = B1 * (B1 * q* q^(n - 2)) =
B1 * (B1 * q^(n - 1)) = B1 * Bn = 128;
(66 - Bn) * Bn = 128;
Bn² - 66 * Bn + 128 = 0;
Bn1,2 = 33 +- sqrt(33² - 128) = 33 +- 31;
Bn = 33 + 31 = 64 (прогрессия возрастающая);
B1 = 66 - Bn = 66 - 64 = 2;
3. Вычислим n:
B1 * Bn = B1² * q^(n - 1) = 128;
q^(n - 1) = 128 / B1² = 128 / 2² = 32 = 2^5;
n - 1 = 5;
n = 5 + 1 = 6.
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24
в заданной прогрессии 6 членов
Объяснение:
1. Для заданной геометрической прогрессии B(n) известно следующее:
B1 + Bn = 66;
B1 = 66 - Bn;
2. B2 * B(n - 1) = 128;
(B1 * q) * (B1 * q^(n - 2) = B1 * (B1 * q* q^(n - 2)) =
B1 * (B1 * q^(n - 1)) = B1 * Bn = 128;
(66 - Bn) * Bn = 128;
Bn² - 66 * Bn + 128 = 0;
Bn1,2 = 33 +- sqrt(33² - 128) = 33 +- 31;
Bn = 33 + 31 = 64 (прогрессия возрастающая);
B1 = 66 - Bn = 66 - 64 = 2;
3. Вычислим n:
B1 * Bn = B1² * q^(n - 1) = 128;
q^(n - 1) = 128 / B1² = 128 / 2² = 32 = 2^5;
n - 1 = 5;
n = 5 + 1 = 6.