1) графический; метод интервалов; выделения квадрата двучлена.
2)смотри это линейные неравенства
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
3)Пересечение множеств - это множество, которому принадлежат те элементы которые есть в КАЖДОМ из пересекаемых множеств.
1) графический; метод интервалов; выделения квадрата двучлена.
2)смотри это линейные неравенства
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
3)Пересечение множеств - это множество, которому принадлежат те элементы которые есть в КАЖДОМ из пересекаемых множеств.
4) Общая сумма, количество
Объяснение:
Я не уверена в ответе!
В решении.
Объяснение:
Дана функция y=x²−25. Построй график функции y=x²−25.
График - парабола, ветви направлены вверх.
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -5 -4 -3 -2 -1 0 1 2 3 4 5
у 0 -9 -16 -21 -24 -25 -24 -21 -16 -9 0
a) Координаты вершины параболы: (0; -25)
б) При каких значениях аргумента значения функции отрицательны?
Согласно графика, у<0 при х от -5 до 5, то есть, х∈(-5; 5).
в) При каких значениях аргумента функция возрастает?
Согласно графика, при х [0; +∞).
г) При каких значениях аргумента функция убывает?
Согласно графика, при х (-∞; 0].