Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
2.
ΔАВС является равнобедренным треугольником, значит, углы при его основании равны.
∠АСВ=∠АВС=70°
∠DBA - смежный с ∠АВС, значит,
∠DBA = 180° - ∠АВС = 180° - 70° = 110°
ответ: ∠DBA = 110°
3.
Весь треугольник ВСК равнобедренным треугольником, значит, против равных сторон ВК=СК лежат равные углы ∠ВСК=∠КВС=70°.
∠КВС и ∠DBA - вертикальные, поэтому они равны между собой.
∠КВС = ∠DBA = 70°.
ответ: ∠DBA = 70°
4.
Рассмотрим ΔАВD ΔBDC.
У них:
AB = BC - по условию
AD = DC - по условию
BD - общая
Знчит, ΔАВD = ΔBDC по трем сторонам.
Отсюда следует ∠DBA = ∠DBC = 40°
ответ: ∠DBA = 40°
Вершина параболы y = x² - это точка O(0; 0).
При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3).
Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем.
В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
ответ: y = (x - 6)² + 3.