Объяснение:
Подставим координаты точки в каждое уравнение системы . Если получим верные числовые равенства, то данная пара является решением системы .
(-3;2) 4*(-3) -5*2 =12;
-12-10=12;
-22≠ 12
Подставлять во второе уравнение не имеет смысла
(-3;2) - не является решением системы.
(3; -2) 4*3-5*(-2)=12
12+10=12
22≠12
(3;-2) - не является решением системы.
(3;2) 4*3-5*2=12
12-10=12
2≠12
(3;2) - не является решением системы.
ответ: ни одна из данных пар чисел не является решением системы
Пусть Х часов - время, которое необходимо первому рабочему для выполнения задания.
Тогда время выполнения вторым рабочим равно (Х + 4) часов.
2. Обозначим все задание за 1.
Тогда производительность первого рабочего 1/Х ед/час, второго - 1/(Х + 4) ед/час.
3. По условию задачи сначала первый рабочий работал 2 часа.
Тогда он выполнил 2 * 1/Х = 2/Х часть задания.
Затем второй рабочий работал 3 часа и выполнил 3 * 1/(Х + 4) = 3/(Х + 4) часть задания.
4. Вместе они сделали 1/2 часть работы.
2/Х + 3/(Х + 4) = 1/2.
4 * Х + 16 + 6 * Х = Х * (Х + 4).
Х * Х - 6 * Х - 16 = 0.
Дискриминант D = 6 * 6 + 4 * 16 = 100.
Х = (6 + 10) / 2 = 8 часов - время первого рабочего.
Х + 4 = 8 + 4 = 12 часов - второго.
ответ: За 8 часов может выполнить задание первый рабочий и за 12 часов - второй.
Объяснение:
Подставим координаты точки в каждое уравнение системы . Если получим верные числовые равенства, то данная пара является решением системы .
(-3;2) 4*(-3) -5*2 =12;
-12-10=12;
-22≠ 12
Подставлять во второе уравнение не имеет смысла
(-3;2) - не является решением системы.
(3; -2) 4*3-5*(-2)=12
12+10=12
22≠12
(3;-2) - не является решением системы.
(3;2) 4*3-5*2=12
12-10=12
2≠12
(3;2) - не является решением системы.
ответ: ни одна из данных пар чисел не является решением системы
Объяснение:
Пусть Х часов - время, которое необходимо первому рабочему для выполнения задания.
Тогда время выполнения вторым рабочим равно (Х + 4) часов.
2. Обозначим все задание за 1.
Тогда производительность первого рабочего 1/Х ед/час, второго - 1/(Х + 4) ед/час.
3. По условию задачи сначала первый рабочий работал 2 часа.
Тогда он выполнил 2 * 1/Х = 2/Х часть задания.
Затем второй рабочий работал 3 часа и выполнил 3 * 1/(Х + 4) = 3/(Х + 4) часть задания.
4. Вместе они сделали 1/2 часть работы.
2/Х + 3/(Х + 4) = 1/2.
4 * Х + 16 + 6 * Х = Х * (Х + 4).
Х * Х - 6 * Х - 16 = 0.
Дискриминант D = 6 * 6 + 4 * 16 = 100.
Х = (6 + 10) / 2 = 8 часов - время первого рабочего.
Х + 4 = 8 + 4 = 12 часов - второго.
ответ: За 8 часов может выполнить задание первый рабочий и за 12 часов - второй.