- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
б) с³+d³-3cd(c+d) = (c+d)(с²-сd+d²)-3cd(c+d) = (c+d)((c²-cd+d²)-3cd) =
= (c+d)(c²-cd+d²-3cd) = (c+d)(c²-4cd+d²)
2. Пусть х - любое число, 2х - четное, 2х+1 - нечетное, 2х+3 - следующее нечетное. Тогда:
(2х+1)²-(2х+3)² = ((2х+1)-(2х+3))((2х+1)+(2х+3)) = (2х+1-2х-3)(2х+1+2х+3) =
= -2(4х+4) = -2*4(х+1) = -8(х+1)
-8(х+1) : 8 = -(х+1) чтд
3. 14⁴-165²+138²-107² = (196²-165²)+(138²-107²) =
= (196-165)(196+165)+(138-107)(138+107) = 31(196+165)+31(138+107) =
= 31((196+165)+(138+107))
31((196+165)+(138+107)) : 31 = ((196+165)+(138+107)) чтд
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)