Пусть на отрезке AB точка C - место встречи автомобиля с первым мотоциклом, точка D - место встречи со вторым мотоциклом. Причем точка D находится между точками C и B. Если AB = s , скорость мотоцикла Vм , скорость автомобиля Vа , AC = x , то CD = 2s/9 , CB = s−x и DB = 7s/9−x . Так как по условию автомобиль и первый мотоцикл выехали одновременно, то x/Va=(s−x)/Vм . То есть затраченное время каждым одинаково на путь до встречи. Аналогично для автомобиля и второго мотоцикла с момента первой встречи автомобиля до второй встречи: 2/9s/Va=7/(9s−x)/Vм . Из первого уравнения выразим x=Va*s/Va+Vм и подставим во второе. После упрощения получаем 2/Vа⋅Vм=7−(Vа/(Vа+Vм)) , то есть 2V²a−5VaVм+2V²м=0 . Разделим левую и правую части уравнения на V²м и получим квадратное уравнение относительно Vа/Vм : 2(Vа/Vм)²−5Vа/Vм+2=0 . Находим, что Va/Vм=2 или Vа/Vм=1/2 . Так как по условию скорость мотоцикла меньше, то Vа=2Vм . Далее рассмотрим случай, когда скорость автомобиля на 20 меньше. Точки C и D будут иметь тот же смысл, что и в первом случае. Пусть AC = y, CD = 72, DB = s- y -72, CB = s - y. Тогда можно составить уравнения: y/(Va−20)=3 , y/(Va−20)=(s−y)/Vм и 72/(Va−20)=(s−y−72)/Vм . Из первого и второго уравнений выражаем y и приравниваем: 6(Vм−10)=(2s(Vм−10))/3Vм−20 , откуда Vм=s+609 . Далее в третье уравнение подставляем найденные выражения так, чтобы осталась только неизвестная s: 36/((s+60)/9)−10)=s−6(((s+60)/9)−10)−72/((s+60)/9) . Получаем 36/(s−30)=(9s−6s+180−648)/9(s+60) , откуда s²−294s−1800=0 и s=300 .
Решение: x^3 +x-2=0 Это уравнение разложим на множители. Для этого в левой части уравнения отнимем х^2 и прибавим х^2 а также -2 представим как (-1-1) x^3 -x^2 +x^2 -1+x-1=0 (x^3 -x^2)+(x^2-1) + (x-1)=0 x^2(x-1) +[(x-1)(x+1)] +1*(x-1)=0 (x-1)(x^2 +x+1+1)=0 (x-1)(x^2+x+2)=0 (x-1)=0 x-1=0 x=1 (x^2+x+2)=0 x^2+x+2=0 x1,2=(-1+-D)/2*1 D=√(1-4*1*2)=√(1-8)=√-7 - дискриминант отрицательный: из отрицательного числа квадратный корень не извлекается , в данном случае уравнение не имеет корней
ответ: Уравнение имеет единственный корень-это целое число х=1
x^3 +x-2=0
Это уравнение разложим на множители.
Для этого в левой части уравнения отнимем х^2 и прибавим х^2 а также -2 представим как (-1-1)
x^3 -x^2 +x^2 -1+x-1=0
(x^3 -x^2)+(x^2-1) + (x-1)=0
x^2(x-1) +[(x-1)(x+1)] +1*(x-1)=0
(x-1)(x^2 +x+1+1)=0
(x-1)(x^2+x+2)=0
(x-1)=0
x-1=0
x=1
(x^2+x+2)=0
x^2+x+2=0
x1,2=(-1+-D)/2*1
D=√(1-4*1*2)=√(1-8)=√-7 - дискриминант отрицательный: из отрицательного числа квадратный корень не извлекается , в данном случае уравнение не имеет корней
ответ: Уравнение имеет единственный корень-это целое число х=1