В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
segrejp
segrejp
06.02.2022 05:41 •  Алгебра

Ребят , Решите графически уравнения:

a) x2 - x + 6; б) -x2 = - 2; b) x2 = x + 2; г) -x2 = - 6.

Показать ответ
Ответ:
adelifanku2
adelifanku2
24.04.2023 05:26
   То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных.
    Чтобы доказать тождество надо выполнить тождественные  преобразования одной или обеих частей равенства, и получить слева  
и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством,  
достаточно найти одно допустимое значение переменной, при котором,  
получившиеся числовые выражения не будут равны друг другу. 

1) ( -m-n)^2=(m-n)^2
      m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение. 

      ( -m-n)^2=(m+n)^2
       m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение

2) (-m+n)^2=(m-n)^2
     m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
      
      (-m+n)^2=(m+n)^2
       m^2-2mn+n^2=m^2+2mn+n^2

И так же делаешь остальные  два. 

    

      
0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота