Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
(Так как при умножении на ноль ЛЮБОГО ЧИСЛА всегда получится ноль). То есть чтобы наше произведение равнялось нулю, либо первый множитель, либо второй множитель, либо третий должен быть равен нулю. Рассмотрим эти случаи и получим три корня уравнения.
b) в данном уравнении главная задача это избавиться от ЗНАМЕНАТЕЛЕЙ. По- скольку в уравнениях мы можем равноправно изменять обе части уравнения, домножим КАЖДОЕ слагаемое на 12. Как известно, при умножении можно сокращать, мы так и поступим и таким образом избавимся от знаменателя. Теперь раскроем скобки и решим уравнение.
По оси х: 9 и (-9)
По оси у: 9 и (-9)
Объяснение:
Общий вид уравнения окружности:
(x-x0)^2 + (y-y0)^2 = R^2
Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
По оси х: 9 и (-9)
По оси у: 9 и (-9)
b) в данном уравнении главная задача это избавиться от ЗНАМЕНАТЕЛЕЙ. По- скольку в уравнениях мы можем равноправно изменять обе части уравнения, домножим КАЖДОЕ слагаемое на 12. Как известно, при умножении можно сокращать, мы так и поступим и таким образом избавимся от знаменателя. Теперь раскроем скобки и решим уравнение.
Объяснение: