1) Показательная функция с основанием 6>1 монотонно возрастает. Большему значению функции соответствует большее значение аргумента: х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0 ---------------(-3)--------------(1)---------------------- \\\\\\\\\\\\\\\\\\\\\ //////////////////// ответ. (-∞;-3)U(1;+∞) 2) Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: x-2=1/2 ⇒x=2,5 ответ. 2,5 3) 25=5² Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: х²-2х-1=2 х²-2х-3=0 (х+1)(х-2)=0 х=-1 или х=2 ответ. -1; 2 4) Замена переменной t²-5t+4=0 D=25-16=9 t=1 или t=4 ⇒ x=0 ⇒ x=2 ответ. 0; 2 5)Замена переменной t²-6t+5=0 D=36-20=16 t=1 или t=5 ⇒ x=0 ⇒ x=1 ответ. 0; 1
Повар Миша может выполнить заказ на 136 минут быстрее, чем повар Коля.
Совместно они выполняют заказ за 51 минуту.
Пусть x минут - выполняет заказ повар Коля, тогда
x + 136 - выполняет заказ повар Миша
За 1 минуту совместной работы они выполнят 1/x + 1/(x+136) заказа.
Составим уравнение:
Решив данное уравнение ,получим x= - 102 и x= 68. По условию задачи x – величина положительная. Следовательно, повар Коля сможет выполнить работу за 68 минут, а повар Миша (68 + 136 = 204) за 204 минуты.
ответ: Коля выполнит заказ за 68 минут, Миша выполнит заказ за 204 минуты
х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0
---------------(-3)--------------(1)----------------------
\\\\\\\\\\\\\\\\\\\\\ ////////////////////
ответ. (-∞;-3)U(1;+∞)
2)
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
x-2=1/2 ⇒x=2,5
ответ. 2,5
3) 25=5²
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
х²-2х-1=2
х²-2х-3=0
(х+1)(х-2)=0
х=-1 или х=2
ответ. -1; 2
4) Замена переменной
t²-5t+4=0
D=25-16=9
t=1 или t=4
⇒ x=0
⇒ x=2
ответ. 0; 2
5)Замена переменной
t²-6t+5=0
D=36-20=16
t=1 или t=5
⇒ x=0
⇒ x=1
ответ. 0; 1
Повар Миша может выполнить заказ на 136 минут быстрее, чем повар Коля.
Совместно они выполняют заказ за 51 минуту.
Пусть x минут - выполняет заказ повар Коля, тогда
x + 136 - выполняет заказ повар Миша
За 1 минуту совместной работы они выполнят 1/x + 1/(x+136) заказа.
Составим уравнение:
Решив данное уравнение ,получим x= - 102 и x= 68. По условию задачи x – величина положительная. Следовательно, повар Коля сможет выполнить работу за 68 минут, а повар Миша (68 + 136 = 204) за 204 минуты.
ответ: Коля выполнит заказ за 68 минут, Миша выполнит заказ за 204 минуты