Т. к. a+1/a - целое, то и (а+1/а) ² - тоже целое и значит (a+1/a)²-2 - тоже целое.
6)Если каждый из 27 учеников будет связан дружбой с 9 другими, то общее количество связей должно быть9 · 27 и это число нужно поделить на 2, так как каждую связь посчитали дважды.
(9 · 27) - это нечётное число, в сомножителях отсутствует 2. Значит, такого количества связей быть не может.
ответ: Каждый из учеников не может дружить с 9 одноклассниками.
ответ: 5-10*x-5y
Объяснение:
Первый не рациональный)
1) log(3; 126) = log (3; 3^2 *7 * 2) = log(3; 3^2) +log(3; 7) +log(3; 2) =
= 2+log(3; 7) +log(3; 2) = 1/x
2) log(7; 126) = log(7; 3^2) +log(7; 7) +log(7; 2) = 2*log(7; 3) +1 + log(7; 2) = 1/y
log(126; 32) = log(126; 2^5) = 5* log(126; 2) = 5/log(2; 126) ) =
= 5/( log(2; 3^2) +log(2; 7) +log(2; 2) ) = 5/( 2*log(2; 3) +log(2; 7) +1)
log(3; 7) = log(126; 3)/log(126; 7) = x/y
log(7; 3) =y/x
Из равенства 1 следует :
log(2; 3) = 1/( 1/x - 2 -x/y) = x*y/( y -2*x*y -x^2)
Из равенства 2 следует :
log(2; 7) = 1/( 1/y - 2*y/x -1) = x*y/( x -2*y^2 -x*y)
log(126; 32) = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
Второй рациональный)
log(126; 126) = log(126; 3^2 *7 *2) = log(126; 3^2)+log(126; 7)+log(126; 2) = 2*log(126; 3) +log(126; 7) +log(126; 2) = 1
log(126; 2) = 1-2*x-y
5*log(126; 2) =5-10*x-5*y
log(126; 32) = 5-10*x-5*y
Но значит ли это, что первый ответ неправильный?
Не совсем так.
Дело в том, что если решить, например, такую систему уравнений:
1-2*x-y = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
126^x +126^y = 10
То одним из решений этой системы будет :
x= log(126; 3)
y=log(126; 7)
1)Если а кратно 3, то 2*а кратно 3*2 = 6.
Если b кратно 2, то 3*b кратно 2*3 = 6
Итак, 2*а + 3*b кратно 6.
2)Пусть a - целое число.
a^2-a=a(a-1). Проанализируем наш результат.
Если a нечетное, то a-1 - четное, а значит и произведение четно.
Если a четно, то произведение в любом случае будет четно.
3)Число делится на 10, если последняя цифра 0
1^3 последняя цифра 1
2^3 последняя цифра 8
3^3 последняя цифра 7
4^3 последняя цифра 4
5^3 последняя цифра 5
6^3 последняя цифра 6
7^3 последняя цифра 3
8^3 последняя цифра 2
9^3 последняя цифра 9
Складывая все эти цифры, получаем, что последняя цифра 5 =>
=> число 1^3+2^3+3^3+...+9^3 не делится на 10
4)не знаю
5)a²+1/a² = a²+2+1/a²-2 = a²+2*a*1/a+1/a²-2 = (a+1/a)²-2
Т. к. a+1/a - целое, то и (а+1/а) ² - тоже целое и значит (a+1/a)²-2 - тоже целое.
6)Если каждый из 27 учеников будет связан дружбой с 9 другими, то общее количество связей должно быть9 · 27 и это число нужно поделить на 2, так как каждую связь посчитали дважды.
(9 · 27) - это нечётное число, в сомножителях отсутствует 2. Значит, такого количества связей быть не может.
ответ: Каждый из учеников не может дружить с 9 одноклассниками.