Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4
[text]1)\frac{b_{12}}{b_{8}}=\frac{4}{1}b_{12}=4b_{8}b_{1}*q^{11}=4b_{1}*q^{7} |:b_{1}q^{7}q^{4}=4q=\sqrt[4]{4}=\sqrt{2}
2)(b_{2}-b_{4})^{2}-b_{5}=-\frac{35}{18}(b_{1}q-b_{1}q^{3})^{2}-b_{1}q^{4}=-\frac{35}{18}(b_{1}q)^{2}*(1-q^{2})^{2}-b_{1}q^{4}+\frac{35}{18}=0(b_{1}*\sqrt{2})^{2}*(1-(\sqrt{2})^{2} )^{2}-b_{1}*(\sqrt{2})^{4}+\frac{35}{18}=02b_{1}^{2}-4b_{1}+\frac{35}{18}=036b_{1}^{2}-72b_{1}+35=0D=(-72)^{2}-4*36*35=5184-5040=144=12^{2}b_{1}'=\frac{72-12}{72}=\frac{60}{72}=\frac{5}{6}b_{1}''=\frac{72+12}{72}=\frac{84}{72}=1\frac{1}{6}>1
b_{7}=b_{1}*q^{6}=\frac{5}{6}*(\sqrt{2})^{6}=\frac{5}{6}*8=\frac{20}{3}=6\frac{2}{3}Otvet:\boxed{b_{7}=6\frac{2}{3}}[\text]