В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Azhar1605
Azhar1605
01.10.2020 17:31 •  Алгебра

Ребятушки Исследовать с производной функцию y=x^3-3x+2 и построить её график. Найти точки, в которых касательные к графику параллельны оси Ох. Найти выпуклость и перегиб.

Показать ответ
Ответ:
Aferistik
Aferistik
19.10.2022 21:43

#1. Функция задана формулой

y = - 4 {x}^{2} - 3x - 1

1.1 y( - 3) = - 4 \times {( - 3)}^{2} - 3 \times ( - 3) - 1 = - 4 \times 9 + 9 - 1 = - 36 + 8 = - 28

1.2 - 2 = - 4 {x}^{2} - 3x - 1

4 {x}^{2} + 3x - 1 = 0

D = {b}^{2} - 4ac = 9 + 16 = 25

x_1 = \frac{ - b + \sqrt{D} }{2a} = \frac{ - 3 + 5}{2 \times 4} = \frac{2}{8} = \frac{1}{4}

x_2 = \frac{ - b - \sqrt{D} }{2a} = \frac{ - 3 - 5}{2 \times 4} = \frac{ - 8}{8} = - 1

1.3 x = - 1, y = - 2, подставляем значения в функцию, если равенство будет верным, то значит точка А(-1; - 2) принадлежит графику функции. (в 1.2 мы нашли корни уравнения, при y=-2, x=-1, значит точка принадлежит графику функции, но, всё же, распишу так: )

- 2 = - 4 \times {( - 1)}^{2} - 3 \times ( - 1) - 1

- 2 = - 4 + 3 - 1

- 2 = - 2

равенство верное, точка принадлежит графику функции.

#2. Используя график функции укажите:

2.1 Область определения функции: [-4.5; 5]

2.2 Область значения функции: [-2.5; 4.5]

2.3 Промежутки возрастания функции: [-4.5; 1], промежутки убывания функции: [1; 5]

#3. y = 1 + 3x.

Это линейная функция, формула которой y = kx + b, где

если k > 0, то функция возрастающая, если k < 0, то функция убывающая.

У нас k = 3, 3 > 0 => функция возрастающая.

#4. Найти область определения функции:

4.1 y = \frac{ - 3x + 1}{ - 5}

Область определения: ( - \infty ; + \infty )

4.2 y = \frac{2x + 1}{3x - 6}

знаменатель не должен быть равным нулю: 3x - 6≠0, 3x≠6, x≠2

Область определения: ( - \infty ; 2) \cup (2; + \infty )

4.3 y = \frac{ \sqrt{x + 2} }{x - 3}

в числителе корень, число под корнем не должно быть отрицательным: x + 2 \geqslant 0, x \geqslant - 2

знаменатель не должен быть равным нулю: x-3≠0, x≠3

Область определения: [ -2; 3) \cup (3; + \infty )

4.4 y = \frac{ \sqrt{x + 10} }{ \sqrt{4 - x} }

в числителе корень, число под корнем не должно быть отрицательным: x + 10 \geqslant 0, x \geqslant - 10

в знаменателе корень, число под корнем не должно быть отрицательным; знаменатель не должен быть равным нулю: 4-x 0, x < 4

Область определения: [ -10; 4)

#5. Разложить на множители квадратный трёхчлен. Можно это сделать по формуле a {x}^{2} + bx + c = a(x - x_1)(x - x_2), где x_1 и x_2 — корни уравнения a {x}^{2} + bx + c = 0.

5.1 {x}^{2} + x - 6 = (x - 2)(x + 3)

{x}^{2} + x - 6 = 0

D = {b}^{2} - 4ac = 1 + 24 = 25

x_1 = \frac{ - b + \sqrt{D} }{2a} = \frac{ - 1 + 5}{2 \times 1} = \frac{4}{2} = 2

x_2 = \frac{ - b - \sqrt{D} }{2a} = \frac{ - 1 - 5}{2 \times 1} = \frac{ - 6}{2} = - 3

5.2 3 {x}^{2} - 10x + 3 = 3(x - 3)(x - \frac{1}{3} ) = (x - 3)(3x - 1)

3 {x}^{2} - 10x + 3 = 0

D = {b}^{2} - 4ac = {( - 10)}^{2} - 4 \times 3 \times 3 = 100 -36 = 64

x_1 = \frac{ - b + \sqrt{D} }{2a} = \frac{10 + 8}{2 \times 3} = \frac{18}{6} = 3

x_2 = \frac{ - b - \sqrt{D} }{2a} = \frac{10 - 8}{2 \times 3} = \frac{2}{6} = \frac{1}{3}

#6. Найти значение дроби \frac{ 2 {x}^{2} - 9x + 4 }{ {x}^{2} - 16} при x = - 3.

Для начала нужно упростить дробь.

Разложим квадратный трёхчлен из числителя на множители, по формуле из задания 5.

2 {x}^{2} - 9x + 4 = 0

D = {b}^{2} - 4ac = {(-9)}^{2} -4 \times 2 \times 4 = 81 - 32 = 49

x_1 = \frac{ - b + \sqrt{D} }{2a} = \frac{9 + 7}{2 \times 2} = \frac{16}{4} = 4

x_2 = \frac{ - b - \sqrt{D} }{2a} = \frac{9 - 7}{2 \times 2} = \frac{2}{4} = \frac{1}{2}

2 {x}^{2} - 9x + 4 = 2(x - 4)(x - \frac{1}{2}) = (x-4)(2x-1)

В знаменателе разность квадратов, используем формулу сокращенного умножения.

{x}^{2} - 16 = {x}^{2} - {4}^{2} = (x-4)(x+4)

В итоге,

\frac{ 2 {x}^{2} - 9x + 4 }{ {x}^{2} - 16} = \frac{(x-4)(2x-1)}{(x-4)(x+4)} = \frac{2x-1}{x+4} = \frac{2 \times (-3) -1}{-3+4} = \frac{-7}{1} = - 7

#7. а) {x}^{2} - 8x + 12 = {x}^{2} - 2 \times 4 \times x + {4}^{2} + (12 - {4}^{2}) = {x}^{2} - 2 \times 4 \times x + {4}^{2} - 4 = {(x - 4)}^{2} - 4

0,0(0 оценок)
Ответ:
BroKeNxHeArT
BroKeNxHeArT
11.07.2021 17:55

№5:

1) а) 24a + 56

  б) -15a + 45

2) а) -43а + 8

   б) -4p + 6

   в) 1

   г) 22у + 6

№7:

а) -2,31

б) -28,54

в) -3,36 - 8

г) -20,82 - 714,7

Объяснение:

№5:

1) а) 7 (5a + 8) - 11а

35а + 56 - 11а

24а + 56

  б) 9x + 3 (15 - 8x)

9x + 45 - 24x

-15а + 45

2) а) 13а - 8 (7а - 1)

13а - 56а + 8

-43а + 8

   б) -2 (2p - 1) + 4

-4p + 2 + 4

-4p + 6

   в) 6 (с + 1) - 6с - 5

6с + 6 - 6с - 5

6 - 5

1

   г) 19у + 2 (3 - 4у) + 11у

19у + 6 - 8у + 11у

22у + 6

№7:

а) 0,7b + 0,3 (b - 5) при b = -0,81

0,7b + 0,3b - 1,5

b - 1,5

-0,81 - 1,5

-2,31

б) 1,7 (a - 11) - 16,3 при а = 3,8

1,7a - 18,7 - 16,3

1,7 * 3,8 - 18,7 - 16,3

6,46 - 18,7 - 16,3  

-28,54

в) 0,6 (4x - 14) - 0,4 (5x - 1) при x = 4 1/6

2,4x - 8,4 - 2x + 0,4  

0,4x - 8,4 + 0,4

Рассмотрим 4 1/6 как 25/6 → 25,6

0,4 * 25,6 - 8,4 + 0,4

-3,36 - 8

г) 5 1/7 (y - 7) - 4 4/7 (14 - y) при у = - 0,3

Рассмотрим 5 1/7 как 36/7 → 36,7

Рассмотрим - 4 4/7 как 32/7 → 32,7

36,7 (y - 7) - 32,7 (14 - y)

36,7y - 256,9 - 457,8 + 32,7y

69,4y - 714,7

69,4 * (-0,3) - 714,7

-20,82 - 714,7

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота