1) x² - 8 x +15 = 0 По теореме Виета если х1 и х2 - корни этого уравнения, то х1 + х2 = 8 х1*х2 = 15 => корни одного знака х1 = 3, х2 = 5 Нам требуется записать квадратное уравнение, корни которого отличались бы от данных корней только знаками, т.е корнями будут числа -3 и -5. По теореме о разложении квадратного трехчлена на множители уравнение с таким корнями будет иметь вид: (х + 3)( х + 5) = 0 раскроем скобки х² +5х + 3х + 15 = 0 х² + 8х + 15 = 0 Вывод: приведенное уравнение, корни которого отличаются от корней данного уравнения только знаками, имеет коэффициент Р обратный по знаку от исходного. 2) x² + bx + c=0 => x² - bx + c=0
Log(6x+1, 25x)-2log(25x, 6x+1)>1 ОДЗ: 25x>0 => x>0 6x+1>0 => x>-1/6 25x=\=1 => x=\=-1/25 6x+1=\=1 => x=\=0 общий промежуток ОДЗ: x>0 пользуемся свойством логарифмов log(6x+1, 25x)-2/log(6x+1, 25x)>1 t= log(6x+1, 25x) t-2/t<1 (t^2-t-2)/2<0 методом интервалов t C (-1;0) U (2;+oo) возвращаемся к переменной log(6x+1, 25x)>-1 1. 6x+1>0 => x>-1/6 6x+1<1 => x<0 x C (-1/6;0) меняем знак неравенства. больше расписывать этот момент не будем, т.к. в остальных случаях промежуток тот же нет решений 2. 6x+1>1 => x>0 25x>1/(6x+1) x>1/30
log(6x+1, 25x)<0 1. x C (-1/6;0) 25x>1 => x>1/25; нет решений 2. x C (0;+oo) 25x<1 => x<1/25 x C (0;1/25)
log(6x+1, 25x)>2 1. x C (-1/6;0) 25x<(6x+1)^2 x C (-1/6;0) 2. x C (0;+oo) 25x>(6x+1)^2 x C 1/9;1/4) объединяем решения x C (1/30; 1/25) U (1/9; 1/4)
По теореме Виета если х1 и х2 - корни этого уравнения, то
х1 + х2 = 8
х1*х2 = 15 => корни одного знака х1 = 3, х2 = 5
Нам требуется записать квадратное уравнение, корни которого отличались бы от данных корней только знаками, т.е корнями будут числа -3 и -5.
По теореме о разложении квадратного трехчлена на множители уравнение с таким корнями будет иметь вид: (х + 3)( х + 5) = 0 раскроем скобки
х² +5х + 3х + 15 = 0
х² + 8х + 15 = 0
Вывод: приведенное уравнение, корни которого отличаются от корней данного уравнения только знаками, имеет коэффициент Р обратный по знаку от исходного.
2) x² + bx + c=0 => x² - bx + c=0
ОДЗ:
25x>0 => x>0
6x+1>0 => x>-1/6
25x=\=1 => x=\=-1/25
6x+1=\=1 => x=\=0
общий промежуток ОДЗ: x>0
пользуемся свойством логарифмов
log(6x+1, 25x)-2/log(6x+1, 25x)>1
t= log(6x+1, 25x)
t-2/t<1
(t^2-t-2)/2<0
методом интервалов
t C (-1;0) U (2;+oo)
возвращаемся к переменной
log(6x+1, 25x)>-1
1. 6x+1>0 => x>-1/6
6x+1<1 => x<0
x C (-1/6;0)
меняем знак неравенства. больше расписывать этот момент не будем, т.к. в остальных случаях промежуток тот же
нет решений
2. 6x+1>1 => x>0
25x>1/(6x+1)
x>1/30
log(6x+1, 25x)<0
1. x C (-1/6;0)
25x>1 => x>1/25; нет решений
2. x C (0;+oo)
25x<1 => x<1/25
x C (0;1/25)
log(6x+1, 25x)>2
1. x C (-1/6;0)
25x<(6x+1)^2
x C (-1/6;0)
2. x C (0;+oo)
25x>(6x+1)^2
x C 1/9;1/4)
объединяем решения
x C (1/30; 1/25) U (1/9; 1/4)