Найдем критические точки, для этого найдем производную и приравняем ее нулю, или точки, в которых производная не существует: y(x) = x + 49/x y`(x) = 1 - 49/x^2 = 0 x^2 = 49, т.е. х1 = -7, х2 = 7 Не существует в точке х = 0. Данному интервалу соответствует только одна точка, х = 7. Найдем что это за точка, для этого найдем 2 производную и подставим туда значение х = 7: y``(x) = 98/x^3 y``(7) = 98/343 ,т.к. вторая производная положительна, то имеем точка минимума. Минимальное значение функции достигается в точке х = 7 и равно: y(7) = 7 + 49/7 = 14
A_n=6+8(n-1)=b_k=2+3(k-1); 8n-3k=1. Подбираем частное решение n=2; k=5 (лень делать "по науке", если решение элементарно угадывается); a_2=b_5=14. Перепишем уравнение в виде 8(n-2)-3(k-5)=0⇒n - 2 делится на 3, то есть n - 2=3m⇒8·3m=3(k-5)⇒k - 5=8m. Поэтому общее решение нашего уравнение имеет вид n=2+3m; k=5+8m - члены наших прогрессий с такими номерами совпадают. Находим все такие k: 1≤k ≤40 k=5; 13;21;29;37 (при этом m=0; 1; 2; 3; 4); n=2; 5; 8; 11; 14 b_5=a_2=14; b_13=a_5=38 (на 24 больше); b_21=a_8=62 (еще на 24 больше); b_29=a_11=86; b_37=a_14=110
y(x) = x + 49/x
y`(x) = 1 - 49/x^2 = 0
x^2 = 49, т.е. х1 = -7, х2 = 7
Не существует в точке х = 0.
Данному интервалу соответствует только одна точка, х = 7.
Найдем что это за точка, для этого найдем 2 производную и подставим туда значение х = 7:
y``(x) = 98/x^3
y``(7) = 98/343 ,т.к. вторая производная положительна, то имеем точка минимума.
Минимальное значение функции достигается в точке х = 7 и равно:
y(7) = 7 + 49/7 = 14
(лень делать "по науке", если решение элементарно угадывается);
a_2=b_5=14. Перепишем уравнение в виде 8(n-2)-3(k-5)=0⇒n - 2 делится на 3, то есть n - 2=3m⇒8·3m=3(k-5)⇒k - 5=8m. Поэтому общее решение нашего уравнение имеет вид n=2+3m; k=5+8m - члены наших прогрессий с такими номерами совпадают. Находим все такие k: 1≤k ≤40
k=5; 13;21;29;37 (при этом m=0; 1; 2; 3; 4); n=2; 5; 8; 11; 14
b_5=a_2=14; b_13=a_5=38 (на 24 больше); b_21=a_8=62 (еще на 24 больше); b_29=a_11=86; b_37=a_14=110