1. Из точек А и В в гранях двугранного угла опущены перпендикуляры АА 1 и ВВ 2 на ребро угла. Найдите длину отрезка АВ , если АА 1 =а , ВВ 1 =b 1 А 1 В 1 =с и двугранный угол равен α1 . Задача решена в учебнике п. 171, стр. 59. 2. У трехгранного угла (аbс ) двугранный угол при ребре с прямой, двугранный угол при ребре b равен ϕ, а плоский угол (bc ) равен γ (ϕ,γ< ). Найдите два других плоских угла α = ∠ (ab ), β = ∠(ас ) Задача решена в учебнике п. 172, стр. 60 3. У трехгранного угла один плоский угол равен γ, а прилегающие к нему двугранные углы равны φ (φ < ). Найдите два других плоских угла α и угол β, который образует плоскость угла γ с противолежащим ребром.
(x -3) /(√x² +2) < 0 и ( 3- х) (|х|+ 5) > 0 равносильны ли ?
(x -3) / (√x² +2) < 0 ; частное двух чисел отрицательно
* * * решение не меняется , если вместо (√x² +2 ) будет √(x² +2) * * *
т.к. √x² +2 > 0 ,то x - 3 < 0 ⇔ x < 3 .
---
(3 -x ) ( |х| + 5) > 0 , произведение двух множителей положительно
т.к. |х|+ 5 > 0 ,то 3 - x > 0 ⇔ x < 3 .
или ( 3- х) (|х|+ 5) > 0) || *(-1) ;
( x- 3) (|х|+ 5) < 0 ; |х|+ 5 > 0 ⇒ x- 3< 0 ⇔ x < 3 .
ответ: неравенства равносильны имеют одинаковые решения_
x ∈ ( -∞; 3) .
2. У трехгранного угла (аbс ) двугранный угол при ребре с прямой, двугранный угол при ребре b равен ϕ, а плоский угол (bc ) равен γ (ϕ,γ< ).
Найдите два других плоских угла α = ∠ (ab ), β = ∠(ас )
Задача решена в учебнике п. 172, стр. 60
3. У трехгранного угла один плоский угол равен γ, а прилегающие к нему двугранные углы равны φ (φ < ). Найдите два других
плоских угла α и угол β, который образует плоскость угла γ с противолежащим ребром.