ПУСТЬ х км/ч - скорость первого авто х+10 км/ч - скорость второго ИЗВЕСТНО 4 ч - время в пути до встречи 560 км - расстояние ПОЛУЧАЕМ
4*(х+х+10)=560 8х+40=560 8х=560-40 8х=520 х=520:8 х=65(км/ч) - скорость первого авто 65+10=75(км/ч) - скорость второго авто
или
ПУСТЬ скорость второго на 10 км/ч больше ИЗВЕСТНО время в пути - 4 ч расстояние 560 км
1) 10*4=40(км) - на столько больше проехал второй, т.к. его скорость больше на 10 км 2) 560-40=520(км) - проехали вместе с одинаковой скоростью 3) 520:4=130(км) - проехал каждый за 4 часа с одинаковой скоростью 4) 130:2=65(км/ч) - скорость первого авто 5) 65+10=75(км/ч) - скорость второго авто
х км/ч - скорость первого авто
х+10 км/ч - скорость второго
ИЗВЕСТНО
4 ч - время в пути до встречи
560 км - расстояние
ПОЛУЧАЕМ
4*(х+х+10)=560
8х+40=560
8х=560-40
8х=520
х=520:8
х=65(км/ч) - скорость первого авто
65+10=75(км/ч) - скорость второго авто
или
ПУСТЬ
скорость второго на 10 км/ч больше
ИЗВЕСТНО
время в пути - 4 ч
расстояние 560 км
1) 10*4=40(км) - на столько больше проехал второй, т.к. его скорость больше на 10 км
2) 560-40=520(км) - проехали вместе с одинаковой скоростью
3) 520:4=130(км) - проехал каждый за 4 часа с одинаковой скоростью
4) 130:2=65(км/ч) - скорость первого авто
5) 65+10=75(км/ч) - скорость второго авто
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
(0) [1] [ 3]
* * * совокупность неравенств [ { t ≤ 1 ; t ≠0 . { t ≥ 3 * * *
a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .