Мы получили в левой части выражение 5a^2-2, которое имеем и в правой. Это значит, что данные в задании выражения действительно равны и мы имеем дело с тождеством, что и требовалось доказать. (Тождество — это равенство, верное при любых допустимых значениях переменных.)
№1
Треугольник со сторонами 3, 4, 5 называют египетским треугольником.
№2
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
№3
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
№4
прямоугольник, у которого все стороны равны
№5
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
№6
произведению смежных сторон
№7
S=ah
№8
отрезок, соединяющий середины двух его сторон треугольника
№9
Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.
№10
1/2
5a^2-2=5a^2-2
Объяснение:
Дано:
(-2а^3+3a^2)-(2a-1)+(2a^2-5a)-(3-2a^3-7a)=5a^2-2
Раскрываем скобки в левой от знака равенства части:
-2а^3+3a^2-2a+1+2a^2-5a-3+2a^3+7a
Приводим подобные члены
(-2а^3+2a^3)+(3a^2+2a^2)-2a-5a+7a-3+1 = 0a^3+5a^2+0a-2 = 5a^2-2
Мы получили в левой части выражение 5a^2-2, которое имеем и в правой. Это значит, что данные в задании выражения действительно равны и мы имеем дело с тождеством, что и требовалось доказать. (Тождество — это равенство, верное при любых допустимых значениях переменных.)