1) проверяем условие при наименьшем возможном значении n.
n>5, значит проверяем условие при n=6
Верно!
2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:
3) Тогда при n=k+1 должно выполняться неравенство:
Вернемся к неравенству из второго пункта и домножим его на 2:
Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:
по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)
Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5
Если , а , при k>5
То есть, , при k>5, то по закону транзитивности:
, при k>5 - ч.т.д
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10 X2.5 _ _4_ 10 2. a*a^2=a^3 a*a^2=a^(1+2) 2.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40 X10 _4_ _ 406. a^3*a=a^4 a^3*a=a^(3+1) 6.1. 3+1=4 +3 _1_ 47. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1. 3+3=6 +3 _3_ 68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120 X40 _3_ _ 12010. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1. 6+3=9 +6 _3_ 9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3 1.1. 4*2.5=10 X2.5 _ _4_ 10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3 2.1. a*a^2=a^3 a*a^2=a^(1+2) 2.1.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3 3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3 4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3 5.1. 10*4=40 X10 _4_ _ 406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3 6.1. a^3*a=a^4 a^3*a=a^(3+1) 6.1.1. 3+1=4 +3 _1_ 47. (-(-40*a^4*b^6))*c^2*3*b^3 7.1. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1.1. 3+3=6 +3 _3_ 68. 40*a^4*b^6*c^2*3*b^3 8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3 9.1. 40*3=120 X40 _3_ _ 12010. 120*a^4*b^9*c^2 10.1. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1.1. 6+3=9 +6 _3_ 9
1) проверяем условие при наименьшем возможном значении n.
n>5, значит проверяем условие при n=6
Верно!
2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:
3) Тогда при n=k+1 должно выполняться неравенство:
Вернемся к неравенству из второго пункта и домножим его на 2:
Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:
по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)
Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5
Если , а , при k>5
То есть, , при k>5, то по закону транзитивности:
, при k>5 - ч.т.д