Решение уравнение:
1) (x-1)(x-2)-x2=5
2) (x+2)(x-3)=x2-7
выполнить действие:
1) 3x^2: (-0,1x^2) ; 2) 4b^2: (-0,5b^2) ; 3) -10x^4y: (-2x) ; 4) -8y^5x: (4y^3x)
выполнить деление многочлена на одночлен:
1) (3xp+pq): p ; 2) 5(ab-cb): b ; 3) (3x^2p^2+pq^2) ; 4) (5a^2b^2-cb): b^2
разделить на множители:
1) 2x(a+b)+y(a+b) ; 2) (3a(x-y)-b(x-y) ; 3) 4c^2(m+n)+d(m+n)
вынести общий множитель за скобки:
1) -ab+a ; 2) a^3b-a ; 3) x^3y^2-y^2 ; 4) 2ab-4a ; 5) 27y^4-18y^2
!
Обозначим второе число (дата), как
тогда неизвестное число должно выглядеть, как:
и должно выполняться равенство:
или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго
и приходящая в третий разряд:
– возможная добавочная единица,
уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц
расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант:
здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г.
– дата 15/04/86 г.
– дата 21/04/47 г.
– дата 24/04/77 г.
– дата 24/04/38 г.
------------------
Рассмотрим второй вариант:
здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
;
Возможен только один случай:
;
Учитывая, что:
получаем разностное число:
– дата 11/15/46 г.
продолжение >>>
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0
a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk, k∈Z
b) 2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk, k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk, k∈Z
ответ: 2πk, k∈Z;
2*(-1)^k*arcsin(2/3)+2πk, k∈Z.
2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk, k∈Z
x=(-1)^k*(π/42)+(π/7)*k, k∈Z
ответ: (-1)^k*(π/42)+(π/7)*k, k∈Z.
3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
=0
a) При у=-1/2
,
k∈Z;
b) При у=2
k∈Z.
ответ: k∈Z;
k∈Z.