Область определения - это множество всех допустимых значений аргумента функции (иксов). Так как квадратный корень существует только для неотрицательных действительных чисел, получаем, что подкоренные функции будут больше либо равняться нулю, запишем это в систему, так как это должно быть одновременно:
Теперь решаем полученную систему: Сначала находим ОДЗ: область определения логарифма от x это только положительные числа, то есть функция под логарифмом больше нуля: Находим решения данного неравенства методом интервалов, то-есть сначала находим нули функции:
это квадратическая функция, график которой -парабола, ветками вверх, которая пересекает ось OX в точках (0;0) и (-1;0), ее вершина располагается в точке, которая рассчитывается следующим образом: Значит при функция будет больше нуля, то-есть ОДЗ: Теперь решаем саму систему:
Решаем данное неравенство также методом интервалов:
- это квадратическая функция, график которой парабола ветками вверх, которая пересекает ось OX в точках и Значит при Теперь собираем все корни неравенств и ОДЗ в одну систему:
Область определения - это множество всех допустимых значений аргумента функции (иксов). Так как квадратный корень существует только для неотрицательных действительных чисел, получаем, что подкоренные функции будут больше либо равняться нулю, запишем это в систему, так как это должно быть одновременно:
Теперь решаем полученную систему:
Сначала находим ОДЗ:
область определения логарифма от x это только положительные числа, то есть функция под логарифмом больше нуля:
Находим решения данного неравенства методом интервалов, то-есть сначала находим нули функции:
это квадратическая функция, график которой -парабола, ветками вверх, которая пересекает ось OX в точках (0;0) и (-1;0), ее вершина располагается в точке, которая рассчитывается следующим образом:
Значит при функция будет больше нуля, то-есть ОДЗ:
Теперь решаем саму систему:
Решаем данное неравенство также методом интервалов:
- это квадратическая функция, график которой парабола ветками вверх, которая пересекает ось OX в точках и Значит при
Теперь собираем все корни неравенств и ОДЗ в одну систему:
Получаем ответ:
График данной функции на картинке ниже
Возведём в квадрат обе части первого уравнения:
(a₁+a₄)²=2²
a₁²+2*a₁*a₄+a₄²=4
a₁²+a₄²=20
Вычитаем из первого уравнения второе:
2*a₁*a₄=-16
a₁*a₄=-8 a₁*(2-a₁)=-8 2a₁-a²=-8 a₁²-2a₁-8=0 D=36 a₁=4 a₁=-2
a₁+a₄=2 a₄=2-a₁ a₄=-2 a₄=4
1) a₁=4 a₄=-2
a₁+a₄=a₁+a₁+3d=2a₁+3d=2*4+3d=8+3d=2 3d=-6 d=-2
a₈=a₁+7d=4+7*(-2)=4-14=-10
S₈`=(a₁+a₈)*n/2=(4+(-10))*8/2=-6*4=-24.
2) a₁=-2 a₄=4
a₁+a₄=2 a₁+a₁+3d=2a₁+3d=2*(-2)+3d=-4+3d=2 3d=6 d=2
a₈=a₁+7d=-2+7*2=12
S₈``=(a₁+a₈)*n/2=(-2+12)*8/2=10*4=40.
ответ: S₈`=-24 S₈``=40.