ответ:Пусть S - сумма всех чисел. Т.к. сумма чисел в каждой строке и в каждом столбце равны, то сумма одной строки или одного столбца равна .
Возьмём сумму первых двух верхних строчек, которая равна . В эту сумму входит сумма чисел верхнего левого квадрата 2х2, равная 10. Значит, сумма чисел в прямоугольнике высотой 2 и длиной 3 в верхнем правом углу равна .
Возьмём сумму нижних трёх строчек, равную , и в которую входит нижний правый квадрат 3х3 с суммой 15. Уберём из этих нижних трёх строчек квадрат 3х3. Останется прямоугольник высотой 3 и длиной 2, по площади равный верхнему прямоугольнику 2х3, и в которых суммы чисел тоже равны. В нижнем оставшемся прямоугольнике сумма чисел равна .
Приравниваем эти суммы и считаем S:
ответ: 25
ЗЫ. ответ означает, что сумма оставшихся областей равна нулю. А это в свою очередь говорит, что там либо все нули, либо есть отрицательные числа.
ответ:Пусть S - сумма всех чисел. Т.к. сумма чисел в каждой строке и в каждом столбце равны, то сумма одной строки или одного столбца равна .
Возьмём сумму первых двух верхних строчек, которая равна . В эту сумму входит сумма чисел верхнего левого квадрата 2х2, равная 10. Значит, сумма чисел в прямоугольнике высотой 2 и длиной 3 в верхнем правом углу равна .
Возьмём сумму нижних трёх строчек, равную , и в которую входит нижний правый квадрат 3х3 с суммой 15. Уберём из этих нижних трёх строчек квадрат 3х3. Останется прямоугольник высотой 3 и длиной 2, по площади равный верхнему прямоугольнику 2х3, и в которых суммы чисел тоже равны. В нижнем оставшемся прямоугольнике сумма чисел равна .
Приравниваем эти суммы и считаем S:
ответ: 25
ЗЫ. ответ означает, что сумма оставшихся областей равна нулю. А это в свою очередь говорит, что там либо все нули, либо есть отрицательные числа.
Объяснение:
3х²-2у² = 25
х²-у²+у = 5 умножим на -3 -3х²+3у²-3у = -15
3х²-2у² = 25
у²-3у = 10
Получаем квадратное уравнение:
у²-3у-10 = 0
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-3)^2-4*1*(-10)=9-4*(-10)=9-(-4*10)=9-(-40)=9+40=49;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(√49-(-3))/(2*1)=(7-(-3))/2=(7+3)/2=10/2=5;
y_2=(-√49-(-3))/(2*1)=(-7-(-3))/2=(-7+3)/2=-4/2=-2.
х находим из 1 уравнения х = +-√((25+2у²) / 3)
х₁,₂ = +-√((25+2*5²) / 3) =+-√(75 / 3) = +-√25 = +-5.
х₃,₄ = +-√((25+2*(-2)²) / 3 = +-√(33 / 3) = +-√11.