ящике находится 25 стандартных и 6 бракованных однотипных деталей. Какова вероятность того, что среди трёх наудачу выбранных деталей окажется хотя бы одна бракованная?
Действуем прямо по пунктам.
1. Записываем событие, вероятность которого надо найти прямо из условия задачи:
AA =(Из 3 выбранных деталей хотя бы одна бракованная).
2. Тогда противоположное событие формулируется так A¯A¯ = (Из 3 выбранных деталей ни одной бракованной) = (Все 3 выбранные детали будут стандартные).
3. Теперь нужно понять, как найти вероятность события A¯A¯, для чего еще раз посмотрим на задачу: говорится об объектах двух видов (детали бракованные и нет), из которых вынимается некоторое число объектов и изучаются (бракованные или нет). Это задача решается с классического определения вероятности (точнее, по формуле гипергеометрической вероятности, подробнее о ней читайте в статье).
Для первого примера запишем решение подробно, далее будем уже сокращать (а полные инструкции и калькуляторы вы найдете по ссылке выше).
Сначала найдем общее число исходов - это число выбрать любые 3 детали из партии в 25+6=31 деталей в ящике. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 31 объектов по 3: n=C331n=C313.
Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы все 3 выбранные детали были стандартные, их можно выбрать так как стандартных деталей в ящике ровно 25).
Пример 2. Из колоды в 36 карт берут наудачу 6 карт. Найти вероятность того, что среди взятых карт будут: хотя бы две пики.
1. Записываем событие AA =(Из 6 выбранных карт будут хотя бы две пики).
2. Тогда противоположное событие формулируется так A¯A¯ = (Из 6 выбранных карт будет менее 2 пик) = (Из 6 выбранных карт будет ровно 0 или 1 пиковые карты, остальные другой масти).
Замечание. Тут я остановлюсь и сделаю небольшое замечание. Хотя в 90% случаях методика "перейти к противоположному событию" работает на отлично, существуют случаи, когда проще найти вероятность исходного события. В данном случае, если искать напрямую вероятность события AA потребуется сложить 5 вероятностей, а для события A¯A¯ - всего 2 вероятности. А вот если бы задача была такая "из 6 карт хотя бы 5 - пиковые", ситуация стала бы обратной и тут проще решать исходную задачу. Если опять попытаться дать инструкцию, скажу так. В задачах, где видите "хотя бы один", смело переходите к противоположному событию. Если же речь о "хотя бы 2, хотя бы 4 и т.п.", тут надо прикинуть, что легче считать.
3. Возвращаемся к нашей задаче и находим вероятность события A¯A¯ с классического определения вероятности.
Общее число исходов выбрать любые 6 карт из 36) равно n=C636n=C366 (калькулятор сочетаний тут).
Найдем число благоприятствующих событию исходов. m0=C627m0=C276 - число выбрать все 6 карт непиковой масти (их в колоде 36-9=27), m1=C19⋅
ящике находится 25 стандартных и 6 бракованных однотипных деталей. Какова вероятность того, что среди трёх наудачу выбранных деталей окажется хотя бы одна бракованная?
Действуем прямо по пунктам.
1. Записываем событие, вероятность которого надо найти прямо из условия задачи:
AA =(Из 3 выбранных деталей хотя бы одна бракованная).
2. Тогда противоположное событие формулируется так A¯A¯ = (Из 3 выбранных деталей ни одной бракованной) = (Все 3 выбранные детали будут стандартные).
3. Теперь нужно понять, как найти вероятность события A¯A¯, для чего еще раз посмотрим на задачу: говорится об объектах двух видов (детали бракованные и нет), из которых вынимается некоторое число объектов и изучаются (бракованные или нет). Это задача решается с классического определения вероятности (точнее, по формуле гипергеометрической вероятности, подробнее о ней читайте в статье).
Для первого примера запишем решение подробно, далее будем уже сокращать (а полные инструкции и калькуляторы вы найдете по ссылке выше).
Сначала найдем общее число исходов - это число выбрать любые 3 детали из партии в 25+6=31 деталей в ящике. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 31 объектов по 3: n=C331n=C313.
Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы все 3 выбранные детали были стандартные, их можно выбрать так как стандартных деталей в ящике ровно 25).
Вероятность равна:
P(A¯)=mn=C325C331=23⋅24⋅2529⋅30⋅31=23004495=0.512.P(A¯)=mn=C253C313=23⋅24⋅2529⋅30⋅31=23004495=0.512.
4. Тогда искомая вероятность:
P(A)=1−P(A¯)=1−0.512=0.488.P(A)=1−P(A¯)=1−0.512=0.488.
ответ: 0.488.
Пример 2. Из колоды в 36 карт берут наудачу 6 карт. Найти вероятность того, что среди взятых карт будут: хотя бы две пики.
1. Записываем событие AA =(Из 6 выбранных карт будут хотя бы две пики).
2. Тогда противоположное событие формулируется так A¯A¯ = (Из 6 выбранных карт будет менее 2 пик) = (Из 6 выбранных карт будет ровно 0 или 1 пиковые карты, остальные другой масти).
Замечание. Тут я остановлюсь и сделаю небольшое замечание. Хотя в 90% случаях методика "перейти к противоположному событию" работает на отлично, существуют случаи, когда проще найти вероятность исходного события. В данном случае, если искать напрямую вероятность события AA потребуется сложить 5 вероятностей, а для события A¯A¯ - всего 2 вероятности. А вот если бы задача была такая "из 6 карт хотя бы 5 - пиковые", ситуация стала бы обратной и тут проще решать исходную задачу. Если опять попытаться дать инструкцию, скажу так. В задачах, где видите "хотя бы один", смело переходите к противоположному событию. Если же речь о "хотя бы 2, хотя бы 4 и т.п.", тут надо прикинуть, что легче считать.
3. Возвращаемся к нашей задаче и находим вероятность события A¯A¯ с классического определения вероятности.
Общее число исходов выбрать любые 6 карт из 36) равно n=C636n=C366 (калькулятор сочетаний тут).
Найдем число благоприятствующих событию исходов. m0=C627m0=C276 - число выбрать все 6 карт непиковой масти (их в колоде 36-9=27), m1=C19⋅
1. у=4х-2
1)
х=0 у=4*0-2=-2
х=6 у=4*6-2=10
2)
у=0
4х-2=0
4х=2
х=0,5
у=2
4х-2=2
4х=4
х=1
2.
Пересечение с осью ОХ:
у=0
1,2х-24=0
1,2х=24
х=20
(20; 0)
Пересечение с осью ОУ:
х=0
у=1,2*0-24
у=-24
3. Поскольку оба графика линейные функции, то для построения достаточно 2х точек:
f(x)=-x+2
x y
0 2
1 1
g(x)=2x-1
x y
0 -1
2 3
1) Из графика видно, что точка пересечения (1; 1)
2) Из построенных графиков видно, что g(x)>f(x), при х>1.
4. График линейной функции имеет вид:
у=kx+b
a График проходит через точки (0; 0), (1; 1)
0=k*0+b ⇒b=0
1=k*1 ⇒k=1
у=х
б) Графиком является постоянная функция:
у=-2
в) График проходит через точки (0; 3) и (3;0)
3=0*k+b ⇒b=3
0=3k+b
3k=0-3
k=-1
y=-x+3