Это - задача на совместную работу. Для решения нужно иметь представление о таких понятиях: A - работа; Р - производительность, то есть работа за единицу времени, в данном случае за один день t - время, необходимое для выполнения работы A=P*t⇒P=A/t; t=A/P Чтобы узнать сколько дней потребуется слесарю на выполнение работы, нужно найти его производительность. 1 - вся работа, так принято в подобного рода задачах. 1/6 - совместная производительность слесаря и ученика, то есть - это работа, выполняемая ими за один день Они вместе работали 4 дня⇒ 1/6*4=4/6=2/3 - работа, выполненная слесарем и учеником за 4 дня. 1-2/3=1/3 - работа, выполненная учеником самостоятельно Ученик работал один 5 дней⇒ (1/3):5=1/15 - производительность ученика Чтобы найти производительность слесаря, нужно из совместной производительности отнять производительность ученика: 1/6-1/15=5/30-2/30=3/30=1/10 - производительность слесаря 1:1/10=10 ответ: 10 дней потребуется слесарю для выполнения заказа в одиночку
Я надеюсь, z здесь никак не связано с комплексными числами. Решаем все это добро на множестве действительных чисел (мне несколько удобнее записывать через x, поэтому буду через х записывать. Думаю, переписать решение, заменив везде x на z, не проблема.)
Теперь учтем, что пределы интегрирования предполагают, что в этом промежутке синус неотрицателен, а значит, его можно раскрыть со знаком "+".
Встает вопрос, что делать с этим интегралом. Попробуем интегрировать по частям. Для этого корень будем дифференцировать, а синус интегрировать.
Если не очень понятно про интегрирование по частям, почитай про него. Здесь важно, что: , и что (без подстановок и прочего) а потом лишь перемножения и вычитание.
Вернемся к интегралу. Занятно получилось, что в выражении спрятано некоторое уравнение относительно как раз нашего интеграла:
Это вообще прекрасно, потому что мы уже фактически нашли наш интеграл:
Естественно, подразумевается, что значение справа вычисляется по двойной подстановке с теми пределами, которые у нас есть.
A - работа;
Р - производительность, то есть работа за единицу времени,
в данном случае за один день
t - время, необходимое для выполнения работы
A=P*t⇒P=A/t; t=A/P
Чтобы узнать сколько дней потребуется слесарю на выполнение работы, нужно найти его производительность.
1 - вся работа, так принято в подобного рода задачах.
1/6 - совместная производительность слесаря и ученика, то есть -
это работа, выполняемая ими за один день
Они вместе работали 4 дня⇒
1/6*4=4/6=2/3 - работа, выполненная слесарем и учеником за 4 дня.
1-2/3=1/3 - работа, выполненная учеником самостоятельно
Ученик работал один 5 дней⇒
(1/3):5=1/15 - производительность ученика
Чтобы найти производительность слесаря, нужно из совместной производительности отнять производительность ученика:
1/6-1/15=5/30-2/30=3/30=1/10 - производительность слесаря
1:1/10=10
ответ: 10 дней потребуется слесарю для выполнения заказа в одиночку
Как ни странно, ответ здесь действительно 2/3
Объяснение:
Я надеюсь, z здесь никак не связано с комплексными числами. Решаем все это добро на множестве действительных чисел (мне несколько удобнее записывать через x, поэтому буду через х записывать. Думаю, переписать решение, заменив везде x на z, не проблема.)
Теперь учтем, что пределы интегрирования предполагают, что в этом промежутке синус неотрицателен, а значит, его можно раскрыть со знаком "+".
Встает вопрос, что делать с этим интегралом. Попробуем интегрировать по частям. Для этого корень будем дифференцировать, а синус интегрировать.
Если не очень понятно про интегрирование по частям, почитай про него. Здесь важно, что: , и что (без подстановок и прочего) а потом лишь перемножения и вычитание.
Вернемся к интегралу. Занятно получилось, что в выражении спрятано некоторое уравнение относительно как раз нашего интеграла:
Это вообще прекрасно, потому что мы уже фактически нашли наш интеграл:
Естественно, подразумевается, что значение справа вычисляется по двойной подстановке с теми пределами, которые у нас есть.
Вот и получили наш ответ.