ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
-10 108 10-9,5 97,75 10-9 88 10-8,5 78,75 10-8 70 10-7,5 61,75 10-7 54 10-6,5 46,75 10-6 40 10-5,5 33,75 10-5 28 10-4,5 22,75 10-4 18 10-3,5 13,75 10-3 10 10-2,5 6,75 10-2 4 10-1,5 1,75 10-1 0 10-0,5 -1,25 100 -2 100,5 -2,25 101 -2 101,5 -1,25 102 0 102,5 1,75 103 4 103,5 6,75 104 10 104,5 13,75 105 18 105,5 22,75 106 28 106,5 33,75 107 40 107,5 46,75 108 54 108,5 61,75 109 70 109,5 78,75 1010 88 10
Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.