Сразу поменяю а на х. Мне так просто привычней. Чтобы значение выражения было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. Сразу заметим, что х не равен -2 Для этого можно было бы попробывать решить уравнение Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!
ответ:[1;2]
Объяснение:
2х^2-6х+4≤0
Если графически решать данной неравенство то
y=2х^2-6х+4-это парабола ветви которой направлены вверх
y=0 - это ось Ох
Решением этого неравенства является область х в которой парабола лежит ниже
или касается в одной точке оси Ох
Но это возможно при D>=0 (а решением является отрезок [x1;x2])
Если D<0 решения нет и нет точек пересечения параболой оси Ох
Найдем D
D=36-32=4
x1=(6-2)/4=1
x2=(6+2)/4=2
Где х1 и х2- точки где парабола пересекает ось Ох
или 2х^2-6х+4 =0
2х^2-6х+4=2(x-1)(x-2)
Перепишем неравенство
2(x-1)(x-2)<=0
Тут можно решать любым методом
Решим методом интервалов.
Методом подстановки находим знаки левой части неравенства
+ 0 - 0 +.
!!
1 2.
Видно что левая часть неравенства меньше нуля в области
где х принадлежит [1;2]
ответ:[1;2]
Чтобы значение выражения
было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем.
Сразу заметим, что х не равен -2
Для этого можно было бы попробывать решить уравнение
Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения.
Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!