В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 25, а разность их квадратов 875. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 25
х² - у² = 875
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 25 + у
(25 + у)² - у² = 875
625 + 50у + у² - у² = 875
50у = 875 - 625
50у = 250
у = 250/50
у = 5 - второе число.
х = 25 + 5
х = 30 - первое число.
Проверка:
30 - 5 = 25, верно.
30² - 5² = 900 - 25 = 875, верно.
См объяснение
а) так как перед стоит положительный коэффициент (равный единице), следовательно ветви параболы направлены вверх
б) координаты вершины (x0, y0) вычисляются по формуле:
x0 = = = 3
y0 = y(x0) = 9 - 6*3 +5 = -4
Значит, координаты вершины : (3, -4)
c) Ось симметрии задается уравнением: x = 3
d) По теореме Виета:
Если x1, x2 - корни квадратного уравнения , ТО
Отсюда получаем корни x1 = 1; x2 = 5
Эти корни и есть нули функции
e) Дополнительные точки можно найти путем подстановки любых чисел: например, пусть x=0. тогда y = y(0) = 5
f) см прикрепленный рисунок
В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 25, а разность их квадратов 875. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 25
х² - у² = 875
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 25 + у
(25 + у)² - у² = 875
625 + 50у + у² - у² = 875
50у = 875 - 625
50у = 250
у = 250/50
у = 5 - второе число.
х = 25 + у
х = 25 + 5
х = 30 - первое число.
Проверка:
30 - 5 = 25, верно.
30² - 5² = 900 - 25 = 875, верно.
См объяснение
Объяснение:
а) так как перед стоит положительный коэффициент (равный единице), следовательно ветви параболы направлены вверх
б) координаты вершины (x0, y0) вычисляются по формуле:
x0 = = = 3
y0 = y(x0) = 9 - 6*3 +5 = -4
Значит, координаты вершины : (3, -4)
c) Ось симметрии задается уравнением: x = 3
d) По теореме Виета:
Если x1, x2 - корни квадратного уравнения , ТО
Отсюда получаем корни x1 = 1; x2 = 5
Эти корни и есть нули функции
e) Дополнительные точки можно найти путем подстановки любых чисел: например, пусть x=0. тогда y = y(0) = 5
f) см прикрепленный рисунок