|x|=-x пусть х>0 значит правая часть уравнения точно отрицательная (-х<0), а с лева модуль, который всегда неорицательный, значит при х>0 нет решений
пусть x≤0, значит справа число неотрицательное (-x≥0) слева при раскрытии модуля меняем знак, значит исх уравнение -x = -x - тождество значит уравнение верно при всех неположительных икс (т.е. при х≤0)
( x / |x| ) <= 1 ОДЗ |x|≠0 ⇔ x≠0 здесь модуль положельное число,умножаем обе части на него (знак неравенствоа поэтому неменяем)
x≤|x| пусть x≥0, ⇒ модуль можно просто опустить x≤x верно при всех икс, т.е. на рассматриваемом промежутке x≥0 пусть х<0, при раскрытии модуля меняем знак x≤-x т.к. слева число отриц., а справа положительное, значит неравенство верно при всех х ответ х∈(-∞,0)U(0,+∞)
2) 3√20 + 5√45 - 2√80 = 3√(4*5) + 5√(9*5) - 2√(16*5) =
= 6√5 + 15√5 - 8√5 = 13√5
3) √176² - (112)²/98 = √(16*11)² - (16*7)²/(49*2) = 16*11 - (16² * 7²)/(7² * 2) =
= 2⁴ *11 - 2⁷ = 2⁴(11 - 2³) = 16*3 = 48
6) √81a + √9a - √49a = 9√a + 3√a - 7√a = 5√a
9) 1/(5+2√6) + 1/(5-2√6) = ((5-2√6)+(5+2√6)) / (5-2√6)*(5+2√6) =
= 10/(5² - (2√6)²) = 10/(25-24) = 10
пусть х>0 значит правая часть уравнения точно отрицательная (-х<0), а с лева модуль, который всегда неорицательный, значит при х>0 нет решений
пусть x≤0, значит справа число неотрицательное (-x≥0)
слева при раскрытии модуля меняем знак, значит исх уравнение
-x = -x - тождество
значит уравнение верно при всех неположительных икс (т.е. при х≤0)
( x / |x| ) <= 1
ОДЗ |x|≠0 ⇔ x≠0
здесь модуль положельное число,умножаем обе части на него (знак неравенствоа поэтому неменяем)
x≤|x|
пусть x≥0, ⇒ модуль можно просто опустить
x≤x верно при всех икс, т.е. на рассматриваемом промежутке x≥0
пусть х<0, при раскрытии модуля меняем знак
x≤-x
т.к. слева число отриц., а справа положительное, значит неравенство верно при всех х
ответ х∈(-∞,0)U(0,+∞)