Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
= -3a^2/4b(b+c)
2) (m-n)^2\m^2-n^2 = (m-n)^2 / (m-n)(m+n) = (m-n)/(m+n)
3) 6pq-18p\(q-3)^2 = 6p(q - 3)/(q - 3)^2 = 6p/(q-3)
4) c^2-18c+81\c-9 = (c-9)^2 / (c-9) = c - 9
5) 5-2m\4m^2-20m+25 = (5 - 2m)/(5-2m)^2 = 1/(5-2m)
6) b^2-49\49-14b+b^2 = (b-7)(b+7)/(b-7)^2= (b+7)/(b-7)
7) 4n^2-4nm+m^2\4n^2-m^2 = (2n-m)^2 / (2n-m)(2n+m) =(2n-m)/(2n+m)
8) a^2-ab-bс-c^2\b^2-a^2+2ac-c^2 = [(a^2-c^2) - b(a+c)] / [b^2 - (a-c)^2] =
= [(a-c)(a+c) - b(a+c)] / [(b-(a-c)(b+(a-c)] = [(a+c)(a-c-b)]/ [-(a-c-b)(a+b-c)]=
= -(a+c)/(a+b-c)
9) x^2-yz+xz-y^2\x^2+yz-xz-y^2 = = [(x^2-y^2) - z(x-y)] / [(x^2-y^2) - z(x-y)]=1
10) 8^11-8^10-8^9\4^15-4^14-4^13 = 8^4(1-1^6-1^5) / 4^12(1^3-1^2-1) =
= 8^4 (1-1-1)/4^12(1-1-1) = 8^4/4^12
11) 87^3+43^3\87^2-87*43+43^2 =
= (87+43)(87^2-87*43+43^2)/(87^2-87*43+43^2) =(87+43) = 130
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так