Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .
Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .
An=21 105=(a1+21)/2*7
n=7 105=a1+147/2
Sn=105 a1=105-147/2
Найти а₁ и d a1=-21
2) An=a1+d(n-1)/2*n
21=-21+6d/2*7
21=-147+6d/2
6d=21+147/2
6d=168/2
6d=84
d=84/6
d=14
ответ a1=-21 d=14