P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
Пространство исходов упорядоченные пары чисел от 1 до 6, например:
(1;6); (2;3), (6;5) и т.п.
Всего таких исходов n = 6*6,
A) m = 5*5. P = (5*5)/(6*6) = 25/36
Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36.
В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6.
Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6.
Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что
P_в + P_г = 1.
6 * (7 + 2х) = 2 * (х - 3) - свойство пропорции
42 + 12х = 2х - 6
12х - 2х = - 6 - 42
10х = - 48
х = - 48 : 10
х = - 4,8
Проверка: (- 4,8 - 3) : 6 = (7 + 2 * (- 4,8)) : 2
- 7,8 : 6 = - 2,6 : 2
- 1,3 = - 1,3
(х + 7) : 3 = (2х + 3) : 5 - это пропорция
3 * (2х + 3) = 5 * (х + 7) - свойство пропорции
6х + 9 = 5х + 35
6х - 5х = 35 - 9
х = 26
Проверка: (26 + 7) : 3 = (2 * 26 + 3) : 5
33 : 3 = 55 : 5
11 = 11