8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
2) 1) Обозначим стороны прямоугольника через х и у
2) Тогда периметр прямоугольника и его площадь равны:
2(х + у) = 146
х * у = 1260
3) Решаем систему уравнения с двумя неизвестными. В первом уравнении выразим у через х:
х + у = 146/2
у = 73 - х
4) Подставим у во второе уравнение:
х*(73 - х) = 1260
х² - 73х + 1260 = 0
5) Решаем полученное квадратное уравнение. Находим дискриминант:
D = 73² - 4*1260 = 289
√D = 17
x₁ = (73 + 17)/2 = 45
x₂ = (73 - 17)2 = 28
6) Находим значение у:
у = 73 - х = 73 - 45 = 28
у = 73 - 28 = 45
ответ: 28 см и 45 см
3) x^2-7x+q=0
-4-7*2+q=0
-11*2+q=0
q= -22
Объяснение:
2. 5*4*3 = 60 чисел;
3.
4. 0,04 + 0,1 + 0,2 = 0,34
5. 50/2500 = 0,02 = 2%;
8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
22. 17!/(2!*(17-2)!) = 17!/(2!*15!) = 136;
23. Упорядояим ряд: 2,3,3,3,4,4,4,4,5,5.
Медиана равна 4, среднее арифметическое - 3,7.
Модуль разности равен |4 - 3,7| = 0,3;