Для построения графика надо составить таблицу значений "у" по принятым значениям "х" для гиперболы: х 0.5 1 2 3 4 5 6 7 у=8/х 16 8 4 2.667 2 1.6 1.333 1.143, для прямой (достаточно двух точек): х 0 6 у=6-х 6 0. На пересечениях (рассматривается только одна ветвь гиперболы в первой четверти графика - где есть пересечение) получаем 2 значения (4;2) и (2;4). Можно проверить аналитически: в точках пересечения графиков их функции равны: у = 6-х у = 8/х 6-х = 8/х 6х - х² = 8. Получаем квадратное уравнение: х²-6х+8 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4; x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2.
x1 + x2 = -p
x1 * x2 = 36
Используем условие: один на 4 меньше другого.
Здесь нумерация корней не имеет значения, поэтому запишем так:
x1 - x2 = 4
Получаем систему:
x1 + x2 = -p
x1 * x2 = 36
x1 = x2 + 4
Из последнего уравнения подставим вместо х1 во второе уравнение х2 + 4
(х2 + 4)*х2 = 36
х2 ^2 + 4 x2 - 36 = 0
D/4 = 4 + 36 = 40
x2 = -2 +- sqrt(40) = -2 +- 2sqrt(10)
находим х1: x1 = x2 + 4 = -2 +-2sqrt(10) + 4 = 2 +- 2 sqrt(10)
Получаем две пары корней:
х1 = 2 + 2 sqrt(10)
x2 = -2 + 2sqrt(10)
x1 = 2 - 2sqrt(10)
x2 = -2 - 2sqrt(10)
Теперь подставляем в первое уравнение: х1 + х2 = -p
Для первой пары: x1 + x2 = 2sqrt(10)
Для второй: x1 + x2 = -4sqrt(10)
-p = 2sqrt(10) или -p = -4sqrt(10)
p = -2sqrt(10) p = 4sqrt(10)
ответ -2sqrt(10)
х 0.5 1 2 3 4 5 6 7
у=8/х 16 8 4 2.667 2 1.6 1.333 1.143,
для прямой (достаточно двух точек):
х 0 6
у=6-х 6 0.
На пересечениях (рассматривается только одна ветвь гиперболы в первой четверти графика - где есть пересечение) получаем 2 значения (4;2) и (2;4).
Можно проверить аналитически: в точках пересечения графиков их функции равны:
у = 6-х
у = 8/х
6-х = 8/х
6х - х² = 8.
Получаем квадратное уравнение: х²-6х+8 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4;
x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2.