Точки пересечения с нулем, достаточно просто найти:
Экстремумы: Прикинув график, мы примерно понимаем, что 0 это ноль и экстремум, одновременно, а между 0 и 3, также есть экстремум в двух(Это можно было бы и утверждать по теореме Ролля) А теперь добавим наш параметр а, т.к. а это конкретное число, это никак не влияет на график по правилу элементарных преобразований, она либо опускать его будешь вниз, либо поднимать вверх. Т.к. а отрицательно, то график будет подниматься(перед а, знак минус) Нужно найти такое а, при котором второй экстремум будет обращаться в ноль, который (2). Составим уравнение: 8-3*4-a=0; -4-a=0; a = -4. Получаем, что ровно два корня, при:
Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.
Точки пересечения с нулем, достаточно просто найти:
Экстремумы:
Прикинув график, мы примерно понимаем, что 0 это ноль и экстремум, одновременно, а между 0 и 3, также есть экстремум в двух(Это можно было бы и утверждать по теореме Ролля)
А теперь добавим наш параметр а, т.к. а это конкретное число, это никак не влияет на график по правилу элементарных преобразований, она либо опускать его будешь вниз, либо поднимать вверх.
Т.к. а отрицательно, то график будет подниматься(перед а, знак минус)
Нужно найти такое а, при котором второй экстремум будет обращаться в ноль, который (2).
Составим уравнение:
8-3*4-a=0;
-4-a=0; a = -4. Получаем, что ровно два корня, при: