Если дискриминант отрицательный ---> корней НЕТ))) а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола))) и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает... т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ... осталось рассмотреть направление ветвей параболы... старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ))) а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ ответ: никогда (пустое множество решений)
Задача. Сколько действительных корней имеет уравнение
Укажите интервал, которому принадлежит наименьший корень:
ответ запишите в виде: где — число корней, — номер промежутка, которому принадлежит наименьший корень.
Решение. Вынесем общий множитель за скобки:
Произведение множителей равно нулю тогда, когда хотя бы один из них равен нулю:
Видя последнее уравнение, понимаем, что искать все его корни не нужно. Этого и не требуют в задании.
Рассмотрим функцию
1) Область определения:
2) Исследуем данную функцию на четность:
Функция не обладает свойством четности. Она ни четная, ни нечетная.
3) Определим нули функции.
3.1. Пересечение с осью
Невозможно дать точный ответ.
3.2. Пересечение с осью
Значит, — точка пересечения с осью
4) Найдем производную функции:
5) Определим критические точки функции, приравняв производную к нулю:
Определим точки экстремума и экстремумы функции:
Итак:
6) Изобразим схематически график функции, строго соблюдая все найденные точки, монотонность функции и симметрию линий около критических точек (см. вложение).
Выводы. Как видно из графика, из уравнения имеем три действительных корня, наименьший из которых находится в интервале Таким образом, уравнение имеет четыре действительных корня.
а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола)))
и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает...
т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ...
осталось рассмотреть направление ветвей параболы...
старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ)))
а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ
ответ: никогда (пустое множество решений)
Задача. Сколько действительных корней имеет уравнение
Укажите интервал, которому принадлежит наименьший корень:
ответ запишите в виде: где — число корней, — номер промежутка, которому принадлежит наименьший корень.
Решение. Вынесем общий множитель за скобки:
Произведение множителей равно нулю тогда, когда хотя бы один из них равен нулю:
Видя последнее уравнение, понимаем, что искать все его корни не нужно. Этого и не требуют в задании.
Рассмотрим функцию
1) Область определения:
2) Исследуем данную функцию на четность:
Функция не обладает свойством четности. Она ни четная, ни нечетная.
3) Определим нули функции.
3.1. Пересечение с осью
Невозможно дать точный ответ.
3.2. Пересечение с осью
Значит, — точка пересечения с осью
4) Найдем производную функции:
5) Определим критические точки функции, приравняв производную к нулю:
Определим точки экстремума и экстремумы функции:
Итак:
6) Изобразим схематически график функции, строго соблюдая все найденные точки, монотонность функции и симметрию линий около критических точек (см. вложение).
Выводы. Как видно из графика, из уравнения имеем три действительных корня, наименьший из которых находится в интервале Таким образом, уравнение имеет четыре действительных корня.
ответ: