Решение: Пусть по плану фермер должен был вспахивать по х га в день, время его работы должно было быть равным у дней, тогда по по условию х·у = 120 (га). В действительности фермер вспахивал на 5 га в день больше, т.е. (х + 5) га, а дней затратил на выполнение всего задания (у - 2). Запишем, что (х + 5)·(у - 2) = 120. Составим и решим систему уравнений:
При решении первого уравнения системы получим два корня, положительным является только один: у = 8. То есть 8 дней - время работы фермера по плану. 8 - 2 = 6 (дней) - затратил на работу фермер в действительности. ответ: 6 дней. Проверим полученный результат: При норме !20: 8 = 15 (га в день) поле фермер собирался вспахать за 8 дней (15·8 = 120 га) На самом деле он вспахивал 15 + 5 = 20 (га в день), потому выполнил работу за 8 - 2 = 6 (дней). (20·6 = 120 га). Верно.
Задачу можно решить и другим составляя дробно-рациональное уравнение.
Пусть по плану фермер должен был вспахивать по х га в день, время его работы должно было быть равным у дней, тогда по по условию х·у = 120 (га).
В действительности фермер вспахивал на 5 га в день больше, т.е. (х + 5) га, а дней затратил на выполнение всего задания (у - 2). Запишем, что
(х + 5)·(у - 2) = 120.
Составим и решим систему уравнений:
При решении первого уравнения системы получим два корня, положительным является только один: у = 8. То есть 8 дней - время работы фермера по плану.
8 - 2 = 6 (дней) - затратил на работу фермер в действительности.
ответ: 6 дней.
Проверим полученный результат:
При норме !20: 8 = 15 (га в день) поле фермер собирался вспахать за 8 дней (15·8 = 120 га)
На самом деле он вспахивал 15 + 5 = 20 (га в день), потому выполнил работу за 8 - 2 = 6 (дней). (20·6 = 120 га). Верно.
Задачу можно решить и другим составляя дробно-рациональное уравнение.