Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
1) (2х²)³ * х²/4 =
= 8х⁶ * х²/4 =
= 8х⁸/4 = 2х⁸. Стандартный вид. (х в восьмой степени).
2) (-3а⁴)⁵ * а³/27 =
= -243а²⁰ * а³/27 =
= -243а²³/27 = -9а²³. Стандартный вид. (а в 23 степени).
1. Для начала можно заметить, что сумма S1=х1..х100=1 - некоторая ломаная линия, длиной 1.
А S2=х1*х2...+х99*х100 - некоторое количество сумм площадей прямоугольников, со сторонами суммы сверху.
Так вот, сумму S1 можно изобразить в виде ломаной, где нечетные х - это вертикальные линии, а четные - смежные с предыдущими горизонтальные линии.
Теперь S1 будет выглядеть как "ступеньки". А S2 - это прямоугольники, отсекаемые вертикальной и горизонтальной линией( нечетные номера произведений S2) - лежащие снизу "ступенек", - или прямоугольники, отсекаемые горизонтальной и вертикальной линией( четные номера произведений S2).
2. Известно, что максимальное значение х1*х2 , при известном постоянном х1+х2 будет достигаться когда х1=х2, то есть прямоугольник будет квадратом. Так как максимальная площадь из множества прямоугольников с одинаковым периметром будет у квадрата.
Из S1 следует, что максимальное значение для х1=х2=1/2
Теперь пусть взяв А и построив от нее вертикально х1 и горизонтально х2 мы придем в точку В. Очертим квадрат со стороной х1=х2=1/2 и вершинами в А и В.
3. Теперь вспомним о наших "ступеньках":
пусть начало их в точке А, а конец в точке С. Тогда А-С образуют прямоугольник внутри которого будут расположены площади S2, причем полупериметр А-С = 1. Но наш квадрат А-В будет иметь не меньшую площадь чем А-С, а значит не меньшую площадь чем все возможные площади прямоугольников из суммы S2.
В решении.
Объяснение:
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
1) (2х²)³ * х²/4 =
= 8х⁶ * х²/4 =
= 8х⁸/4 = 2х⁸. Стандартный вид. (х в восьмой степени).
2) (-3а⁴)⁵ * а³/27 =
= -243а²⁰ * а³/27 =
= -243а²³/27 = -9а²³. Стандартный вид. (а в 23 степени).
1. Для начала можно заметить, что сумма S1=х1..х100=1 - некоторая ломаная линия, длиной 1.
А S2=х1*х2...+х99*х100 - некоторое количество сумм площадей прямоугольников, со сторонами суммы сверху.
Так вот, сумму S1 можно изобразить в виде ломаной, где нечетные х - это вертикальные линии, а четные - смежные с предыдущими горизонтальные линии.
Теперь S1 будет выглядеть как "ступеньки". А S2 - это прямоугольники, отсекаемые вертикальной и горизонтальной линией( нечетные номера произведений S2) - лежащие снизу "ступенек", - или прямоугольники, отсекаемые горизонтальной и вертикальной линией( четные номера произведений S2).
2. Известно, что максимальное значение х1*х2 , при известном постоянном х1+х2 будет достигаться когда х1=х2, то есть прямоугольник будет квадратом. Так как максимальная площадь из множества прямоугольников с одинаковым периметром будет у квадрата.
Из S1 следует, что максимальное значение для х1=х2=1/2
Теперь пусть взяв А и построив от нее вертикально х1 и горизонтально х2 мы придем в точку В. Очертим квадрат со стороной х1=х2=1/2 и вершинами в А и В.
3. Теперь вспомним о наших "ступеньках":
пусть начало их в точке А, а конец в точке С. Тогда А-С образуют прямоугольник внутри которого будут расположены площади S2, причем полупериметр А-С = 1. Но наш квадрат А-В будет иметь не меньшую площадь чем А-С, а значит не меньшую площадь чем все возможные площади прямоугольников из суммы S2.
То есть maxS2=1/4 -!