Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
В решении.
Объяснение:
По теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Выбрать прямоугольные треугольники:
1) (3√2)² = 9*2 = 18; (2√2)² = 4*2 = 8; (√26)² = 26;
18 + 8 = 26, является.
2) (√3)² = 3; (√11)² = 11; (√14)² = 14;
3 + 11 = 14, является.
3) (√19)² = 19; 2² = 4; (√23)² = 23;
19 + 4 = 23, является.
4) (2√11)² = 4*11 = 44; (√30)² = 30; (√15)² = 15;
30 + 15 ≠ 44, не является.
5) (√11)² = 11; (2√7)² = 28; (√17)² = 17;
11 + 17 = 28, является.
6) (2√3)² = 12; 6² = 36; (2√6)² = 24;
12 + 24 = 36, является.
7) (√14)² = 14; (√15)² = 15; (√23)² = 23;
14 + 15 ≠ 23, не является.
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).