число 79
Объяснение:
Пусть 10а+b искомое заданное число (a,b - цифры)
Тогда 10a+b=(a+b)*k+15, где k є Z
Если остаток 15, то делимое должно быть больше 15, т.е.
a+b>15 (a+b>=16)
Если хотя бы одна цифра меньше 7, то a+b<7+9=16, поэтому расмотрим оставшиеся варианты
a=7, b=7 7+7=14<16
a=7, b=8 7+8=15<16
a=7, b=9 9+7=16; 79:(7+9)=4 (ост. 15) подходит
a=8, b=7 8+7=15<16
a=9, b=7 9+7=16; 97:(9+7)=6(ост. 1)
a=8, b=8: 88:(8+8)=5 (ост. 8)
a=9, b=8: 98:(8+9)=5 (ост. 13)
a=9, b=9: 99:(9+9)=5 (ост. 9)
a=8, b=9: 89:(8+9)=5 (ост.4 )
f(x) = 2x – ln x
ОДЗ: х>0
f'(x) = 2 – 1/x
f'(x) = 0
2 – 1/x = 0
2х = 1
х = 0,5
разбиваем область определения функции f(x) на интервалы и определяем знак производной f'(x) в этих интервалах
- +
0 0,5
f'(0,25) = 2-1/0,25 = 2-4 = -2 f'(x)<0 ⇒ f(x) убывает
f'(1) = 2-1/1 = 2-1 = 1 f'(x)>0 ⇒ f(x) возрастает
Итак, при х∈(0; 0,5] f(x) убывает
при х ∈[ 0,5; +∞) f(x) возрастает
В точке х = 0,5 производная меняет знак с - на + , следовательно, это точка минимума.
уmin = у(0,5) = 2·0,5 – ln 0,5 ≈ 1 - 0,693 ≈ 0,307
число 79
Объяснение:
Пусть 10а+b искомое заданное число (a,b - цифры)
Тогда 10a+b=(a+b)*k+15, где k є Z
Если остаток 15, то делимое должно быть больше 15, т.е.
a+b>15 (a+b>=16)
Если хотя бы одна цифра меньше 7, то a+b<7+9=16, поэтому расмотрим оставшиеся варианты
a=7, b=7 7+7=14<16
a=7, b=8 7+8=15<16
a=7, b=9 9+7=16; 79:(7+9)=4 (ост. 15) подходит
a=8, b=7 8+7=15<16
a=9, b=7 9+7=16; 97:(9+7)=6(ост. 1)
a=8, b=8: 88:(8+8)=5 (ост. 8)
a=9, b=8: 98:(8+9)=5 (ост. 13)
a=9, b=9: 99:(9+9)=5 (ост. 9)
a=8, b=9: 89:(8+9)=5 (ост.4 )
f(x) = 2x – ln x
ОДЗ: х>0
f'(x) = 2 – 1/x
f'(x) = 0
2 – 1/x = 0
2х = 1
х = 0,5
разбиваем область определения функции f(x) на интервалы и определяем знак производной f'(x) в этих интервалах
- +
0 0,5
f'(0,25) = 2-1/0,25 = 2-4 = -2 f'(x)<0 ⇒ f(x) убывает
f'(1) = 2-1/1 = 2-1 = 1 f'(x)>0 ⇒ f(x) возрастает
Итак, при х∈(0; 0,5] f(x) убывает
при х ∈[ 0,5; +∞) f(x) возрастает
В точке х = 0,5 производная меняет знак с - на + , следовательно, это точка минимума.
уmin = у(0,5) = 2·0,5 – ln 0,5 ≈ 1 - 0,693 ≈ 0,307