Реши задачу, выделяя три этапа математического моделирования:
«Расстояние между городами мотоциклист проехал за 4 ч., а велосипедист проехал за 7 ч. Скорость велосипедиста на 18 км/ч меньше скорости мотоциклиста. Найди скорости велосипедиста и мотоциклиста и расстояние между городами».
х расстояние между А и В.
х/(2*80) = х/160 ч время потраченное 1 автомобилем на первую половину пути
х/(2*120) = х/240 ч время потраченное 1 автомобилем на вторую половину пути
х/100 ч время потраченное 2 автомобилем на путь
По условию известно, что второй автомобиль, затратил на движение на 6 минут = 6/60 = 1/10 ч меньше первого.
Составим уравнение:
х/160 + х/240 - х/100 = 1/10 (умножим обе части уравнения на 10)
х/16 + х/24 - х/10 = 1 (приведем к общему знаменателю = 240)
(15х + 10х - 24х)/240 = 1
х = 240
ответ. 240 км расстояние между А и В.
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.