В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
В решении.
Объяснение:
Рис. 1
1) Координаты вершины параболы (2; -1);
2) Уравнение оси симметрии: а = 2;
3) Нули функции - координаты точек пересечения параболой оси Ох, где у = 0:
(1; 0); (3; 0).
4) Функция возрастает при х∈(2; +∞);
функция убывает при х∈(+∞; 2).
5) Область значений функции - это проекция графика на ось Оу.
Обозначение Е(f) или Е(y).
Область значений параболы ограничена ординатой её вершины, у= -1.
у может быть больше, либо равен -1.
Е(y) = у∈[-1; +∞)
6) у наиб. не существует.
у наим. = -1.
Рис. 2
1) Координаты вершины параболы (-2; 2);
2) Уравнение оси симметрии: а = -2;
3) Нули функции - координаты точек пересечения параболой оси Ох, где у = 0:
(0; 0); (-4; 0).
4) Функция возрастает при х∈(-∞; -2);
функция убывает при х∈(-2; -∞).
5) Область значений функции - это проекция графика на ось Оу.
Обозначение Е(f) или Е(y).
Область значений параболы ограничена ординатой её вершины, у=2.
у может быть меньше, либо равен 2.
Е(y) = у∈[2; -∞)
6) у наим. не существует.
у наиб. = 2.
-√14; -3(1); 3,147.
Объяснение:
В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
-√14; -3(1); 3,147.