Решить .
1) используя основное свойство дроби, замените символ * или числовым выражением таким образом, чтобы получилось верное равенство:
а) 3х/5 = */15; б) 2ab/3 = */3a²b;
в)-mn/2m²=n/*.
2) найдите значение дроби : х-3у/6х²-54у², если х+3у = 1/4.
3) вычислите значение выражения: 3(в 8-й степени) • 17 ( в 7-й степени) / 51(в 6-й степени).
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.
1 самолёт 1600 км (х + 80) км/ч 1600/(х + 80) ч
2 самолёт 1600 км х км/ч 1600/ х ч
Составим уравнение.
1600/х - 1600/ (х + 80) = 1 | · x (x + 80) ≠ 0
1600( x + 80) - 1600 x = x( x + 80)
1600 x + 1600·80 - 1600 x = x² +80 x
x² +80 x - 1600·80 = 0
a) x = -400 (не подходит по условию задачи)
б) х = 320(км/ч) - скорость 2 самолёта.
320 + 80 = 400 (км/ч) - скорость 1 самолёта