решить 1. Найти область определения функции D(f) 2. Выяснить, не является ли функция чётной или нечётной, периодической. Функция является чётной, если для любого х из области определения функции выполняется равенство f(-x) = f(x). График чётной функции симметричен относительно оси ординат.
Функция является нечётной, если для любого х из области определения функции выполняется равенство f(-x) =- f(x). График нечётной функции симметричен относительно начала координат.
Функция называется периодической, если существует такое число Р, что для любого х из области определения функции выполняется равенство:
f(x-P) = f(x) = f(x+P).
3. Найти точки пересечения графика функции с осями координат.
х=0. у=… у=0. х=…
4. Найти асимптоты графика функции.
x⁴=(3x-10)²
x⁴=9x²-60x+100
x⁴-9x²+60x-100=0
x₁=2
x⁴-9x²+60x-100 I_x-2
x⁴-2x³ I x³+2x²-5x+50
2x³-9x²
2x³-4x²
-5x²+60x
-5x²+10x
50x-100
50x-100
0
x³+2x²-5x+50=0
x₂=-5
x³+2x²-5x+50 I_ x+5
x³+5x² I x²-3x+10
-3x²-5x
-3x²-15x
10x+50
10x+50
0
x²-3x+10=0 D=-31 ⇒
Уравнение действительных корней не имеет.
ответ: х₁=2 х₂=-5.
Объяснение:
Удачи!!!
Решение.
Пусть первый кран работал (n − 1)d + 8 часов, тогда второй кран работал (n − 2)d + 8 часов, ..., n-й кран — 8 часов. Тогда
дробь, числитель — (n минус 1)d плюс 8, знаменатель — 8 = дробь, числитель — 5, знаменатель — 1 равносильно (n минус 1)d=32,
(n минус 1)d плюс 8 плюс (n минус 2)d плюс 8 плюс ... плюс 8=d умножить на дробь, числитель — (n минус 1)n, знаменатель — 2 плюс 8n=16n плюс 8n=24n.
Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Объяснение: