Высота(H) конуса, его образующая(L) и радиус(R) основания образуют прямоугольный треугольник, причем образующая выступает в полученном треугольнике в роли гипотенузы.
L² = R² + H²
Одновременно, для угла (α) между высотой и образующей:
cosα = R/L
Заменим в формуле Пифагора (L) на (R/cosα = R/0.8 = 5R/4):
(5R/4)² = R² + H²
H = √(25R²/16 - R²) = √(9R² / 16) = 3R/4
Объём конуса (V) равен:
V = 1/3 * S₍осн₎ * H = 1/3 * πR² * H = 1/3 * πR² * 3R/4 = πR³/4
V₁ = π/4
V₂ = 16π
V₃ = 2π
Объяснение:
Высота(H) конуса, его образующая(L) и радиус(R) основания образуют прямоугольный треугольник, причем образующая выступает в полученном треугольнике в роли гипотенузы.
L² = R² + H²
Одновременно, для угла (α) между высотой и образующей:
cosα = R/L
Заменим в формуле Пифагора (L) на (R/cosα = R/0.8 = 5R/4):
(5R/4)² = R² + H²
H = √(25R²/16 - R²) = √(9R² / 16) = 3R/4
Объём конуса (V) равен:
V = 1/3 * S₍осн₎ * H = 1/3 * πR² * H = 1/3 * πR² * 3R/4 = πR³/4
Для данных R₁, R₂, R₃:
1) V₁ = π*1³/4 = π/4
2) V₂ = π*4³/4 = 16π
3) V₃ = π*2³/4 = 2π
912.
Сначало всё обозначим:
скорость лодки х ;
скорость лодки против чтения х-4 ;
время пути по реке 20/х-4 ;
время пути по озеру 14/х.
Разница между тем и другим временем 1 час по условию. Составляем уравнение:
20/х-4 - 14/х = 1
Приводим к общему знаменателю, перемножаем, получаем квадратное уравнение:
х^2 - 10х - 56 = 0
По формуле квадратных корней находим
х1 = - 4
отбрасываем, отрицательной скорости не бывает,
х2 = 14
принимаем, это собственная скорость лодки. Скорость лодки против течения 14 - 4 = 10 (км/ч)
914.
(знаки это дробь)
Так как скорость не может принимать отрицательное значение, следовательно искомый ответ : 40.
ответ : Токарь должен был обрабатывать 40 деталей в час по плану.
915.
Решение.
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна работать
(х+2) - изделия
Бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2) = 3
120(х+2) - 120х = 3х(х+2)
120х+240 - 120х - 3х² - 6х = 0
3х² + 6х - 240 = 0
х² + 2х - 80 = 0
D = 4 + 4 × 1 × 80 = 324
x¹ = (-2 - 18)/2 = - 10 < 0 не удовлетворяет условию задачи
х² = (-2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану.
ответ : 8 изделий.
Нуу вроде всё)